ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Moran's eigenvector maps  (1)
  • Nutrients  (1)
  • Remote sensing  (1)
  • Wiley  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walter, J. A., Castorani, M. C. N., Bell, T. W., Sheppard, L. W., Cavanaugh, K. C., & Reuman, D. C. Tail-dependent spatial synchrony arises from nonlinear driver-response relationships. Ecology Letters, 25, (2022): 1189– 1201, https://doi.org/10.1111/ele.13991.
    Description: Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, ‘tail-dependent’ follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.
    Description: This research was supported by NSF-OCE awards 2023555, 2023523, 2140335, 2023474, and the James S McDonnell Foundation. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE 1831937.
    Keywords: Copula ; Disturbance ; Giant kelp ; Macrocystis pyrifera ; Nutrients ; Stability ; Synchrony ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castorani, M. C. N., Bell, T. W., Walter, J. A., Reuman, D. C., Cavanaugh, K. C., & Sheppard, L. W. Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects. Ecology Letters, 25(8), (2022): 1854-1868, https://doi.org/10.1111/ele.14066.
    Description: Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987–2019) and 〉900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)—underpinned by climatic variability—act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
    Description: This study was funded by the U.S. National Science Foundation (NSF) through linked NSF-OCE awards 2023555, 2023523, 2140335, and 2023474 to M.C.N.C., K.C.C., T.W.B., and D.C.R., respectively. The research was initiated during a synthesis working group at the Long Term Ecological Research Network Office and National Center for Ecological Analysis and Synthesis funded under NSF-DEB award 1545288. D.C.R. and L.W.S. were also partly supported by NSF award 1714195, the McDonnell Foundation, and the California Department of Fish and Wildlife Delta Science Program. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE award 1831937.
    Keywords: Coherence ; Disturbance ; Moran effect ; Nitrate ; North Pacific Gyre Oscillation ; Oceanography ; Population dynamics ; Remote sensing ; Spatial synchrony ; Wavelet transforms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-31
    Description: Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2= 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2= 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (〉66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
    Keywords: community assembly ; dispersal limitation ; environmental selection ; evolutionary principal ; component analysis ; indicator lineage analysis ; Moran's eigenvector maps ; neotropics ; Niche ; conservatism ; tropical rain forests
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...