ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-28
    Description: This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-01-29
    Description: Geochemical models of atmospheric evolution predict that during the late Carboniferous, ca . 300 Ma, atmospheric oxygen and carbon dioxide concentrations were 35% and 0.03%, respectively. Both gases compete with each other for ribulose–1,5–bisphosphate carboxylase/oxygenase–the primary C–fixing enzyme in C 3 land plants: and the absolute concentrations and the ratio of the two in the atmosphere have the potential to strongly influence land–plant function. The Carboniferous therefore represents an era of potentially strong feedback between atmospheric composition and plant function. We assessed some implications of this ratio of atmospheric gases on plant function using experimental and modelling approaches. After six weeks growth at 35% O 2 and 0.03% carbon dioxide, no photosynthetic acclimation was observed in the woody species Betula pubescens and Hedera helix relative to those plants grown at 21% O 2 . Leaf photosynthetic rates were 29% lower in the high O 2 environment compared to the controls. A global–scale analysis of the impact of the late Carboniferous climate and atmospheric composition on vegetation function was determined by driving a process–based vegetation–biogeochemistry model with a Carboniferous global palaeoclimate simulated by the Universities Global Atmospheric Modelling Programme General Circulation Model. Global patterns of net primary productivity, leaf area index and soil carbon concentration for the equilibrium model solutions showed generally low values everywhere, compared with the present day, except for a central band in the northern land mass extension of Gondwana, where high values were predicted. The areas of high soil carbon accumulation closely match the known distribution of late Carboniferous coals. Sensitivity analysis with the model indicated that the increase in O 2 concentration from 21% to 35% reduced global net primary productivity by 18.7% or by 6.3 GtC yr –1 . Further work is required to collate and map at the global scale the distribution of vegetation types, and evidence for wildfires, for the late Carboniferous to test our predictions.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-28
    Description: The Palaeocene–Eocene thermal maximum (PETM), a rapid global warming event and carbon-cycle perturbation of the early Palaeogene, provides a unique test of climate and carbon-cycle models as well as our understanding of sedimentary methane hydrate stability, albeit under conditions very different from the modern. The principal expression of the PETM in the geological record is a large and rapid negative excursion in the carbon isotopic composition of carbonates and organic matter from both marine and terrestrial environments. Palaeotemperature proxy data from across the PETM indicate a coincident increase in global surface temperatures of approximately 5–6°C. Reliable estimates of atmospheric CO 2 changes and global warming through past transient climate events can provide an important test of the climate sensitivities reproduced by state-of-the-art atmosphere–ocean general circulation models. Here, we synthesize the available carbon-cycle model estimates of the magnitude of the carbon input to the ocean–atmosphere–biosphere system, and the consequent atmospheric p CO 2 perturbation, through the PETM. We also review the theoretical mass balance arguments and available sedimentary evidence for the role of massive methane hydrate dissociation in this event. The plausible range of carbon mass input, approximately 4000–7000 PgC, strongly suggests a major alternative source of carbon in addition to any contribution from methane hydrates. We find that the potential range of PETM atmospheric p CO 2 increase, combined with proxy estimates of the PETM temperature anomaly, does not necessarily imply climate sensitivities beyond the range of state-of-the-art climate models.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...