ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-26
    Description: Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal–glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-05
    Description: Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (point-to-point communication, the prototype being synaptic transmission with axons and terminals) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid (CSF)) involving large numbers of cells in the CNS. Volume and synaptic transmission become integrated inter alia through the ability of their chemical signals to activate different types of receptor protomers in heteroreceptor complexes located synaptically or extrasynaptically in the plasma membrane. The demonstration of extracellular dopamine (DA) and serotonin (5-HT) fluorescence around the DA and 5-HT nerve cell bodies with the Falck–Hillarp formaldehyde fluorescence method after treatment with amphetamine and chlorimipramine, respectively, gave the first indications of the existence of VT in the brain, at least at the soma level. There exist different forms of VT. Early studies on VT only involved spread including diffusion and flow of soluble biological signals, especially transmitters and modulators, a communication called extrasynaptic (short distance) and long distance (paraaxonal and paravascular and CSF pathways) VT. Also, the extracellular vesicle type of VT was demonstrated. The exosomes (endosome-derived vesicles) appear to be the major vesicular carriers for VT but the larger microvesicles also participate. Both mainly originate at the soma–dendritic level. They can transfer lipids and proteins, including receptors, Rab GTPases, tetraspanins, cholesterol, sphingolipids and ceramide. Within them there are also subsets of mRNAs and non-coding regulatory microRNAs. At the soma–dendritic membrane, sets of dynamic postsynaptic heteroreceptor complexes (built up of different types of physically interacting receptors and proteins) involving inter alia G protein-coupled receptors including autoreceptors, ion channel receptors and receptor tyrosine kinases are hypothesized to be the molecular basis for learning and memory. At nerve terminals, the presynaptic heteroreceptor complexes are postulated to undergo plastic changes to maintain the pattern of multiple transmitter release reflecting the firing pattern to be learned by the heteroreceptor complexes in the postsynaptic membrane.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...