ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-09-29
    Description: The anterior surface of the mammalian cornea plays an important role in maintaining a smooth optical interface and consequently a sharp retinal image. The smooth surface is produced by a tear film, which adheres to a variety of microprojections, which increase the cell surface area, improve the absorbance of oxygen and nutrients and aid in the movement of metabolic products across the outer cell membrane. However, little is known of the structural adaptations and tear film support provided in other vertebrates from different environments. Using field emission scanning electron microscopy, this study examines the density and surface structure of corneal epithelial cells in representative species of the classes Cephalaspidomorphi, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, Aves and Mammalia, including some Marsupialia. Variations in cell density and the structure and occurrence of microholes, microridges, microplicae and microvilli are described with respect to the demands placed upon the cornea in different aquatic environments such as marine and freshwater. A progressive decrease in epithelial cell density occurs from marine (e.g. 29348 cells mm −2 in the Dover sole Microstomius pacificus ) to estuarine or freshwater (e.g. 5999 cells mm −2 in the black bream Acanthopagrus butcheri ) to terrestrial (e.g. 2126 cells mm −2 in the Australian koala Phascolarctos cinereus ) vertebrates, indicating the reduction in osmotic stress across the corneal surface. The microholes found in the Southern Hemisphere lampreys, namely the pouched lamprey ( Geotria australis ) and the shorthead lamprey ( Mordacia mordax ) represent openings for the release of mucus, which may protect the cornea from abrasion during their burrowing phase. Characteristic of marine teleosts, fingerprint–like patterns of corneal microridges are a ubiquitous feature, covering many types of sensory epithelia (including the olfactory epithelium and the oral mucosa). Like microplicae and microvilli, microridges stabilize the tear film to maintain a smooth optical surface and increase the surface area of the epithelium, assisting in diffusion and active transport. The clear interspecific differences in corneal surface structure suggest an adaptive plasticity in the composition and stabilization of the corneal tear film in various aquatic environments.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-09-29
    Description: The relative importance of vision in a foveate group of alepocephalid teleosts is examined in the context of a deep–sea habitat beyond the penetration limits of sunlight. The large eyes of Conocara spp. possess deep convexiclivate foveae lined with Müller cells comprising radial shafts of intermediate filaments and horizontal processes. Photoreceptor cell (171.8 × 10 3 rods mm −2 ) and retinal ganglion cell (11.9 × 10 3 cells mm −2 ) densities peak within the foveal clivus and the perifoveal slopes, respectively, with a centro–peripheral gradient between 3:1 (photoreceptors) and over 20:1 (ganglion cells). The marked increase in retinal sampling localized in temporal retina, coupled with a high summation ratio (13:1), suggest that foveal vision optimizes both spatial resolving power and sensitivity in the binocular frontal visual field. The elongated optic nerve head is comprised of over 500 optic papillae, which join at the embryonic fissure to form a thin nervous sheet behind the eye. The optic nerve is divided into two axonal bundles; one receiving input from the fovea (only unmyelinated axons) and the other from non–specialized retinal regions (25% of axons are myelinated), both of which appear to be separated as they reach the visual centres of the central nervous system. Comparison of the number of primary (first–order) axonal pathways for the visual (a total of 63.4 × 10 6 rod photoreceptors) and olfactory (a total of 15.24 × 10 5 olfactory nerve axons) inputs shows a marked visual bias (ratio of 41:1). Coupled with the relative size of the optic tecta (44.0 mm 3 ) and olfactory bulbs (0.9 mm 3 ), vision appears to play a major role in the survival of these deep–sea teleosts and emphasizes that ecological and behavioural strategies account for significant variation in sensory brain structure.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-11
    Description: Stable isotope analyses provide the means to examine the trophic role of animals in complex food webs. Here, we used stable isotope analyses to characterize the feeding ecology of reef manta rays ( Mobula alfredi ) at a remote coral reef in the Western Indian Ocean. Muscle samples of M. alfredi were collected from D'Arros Island and St. Joseph Atoll, Republic of Seychelles, in November 2016 and 2017. Prior to analysis, lipid and urea extraction procedures were tested on freeze-dried muscle tissue in order to standardize sample treatment protocols for M. alfredi . The lipid extraction procedure was effective at removing both lipids and urea from samples and should be used in future studies of the trophic ecology of this species. The isotopic signatures of nitrogen (δ 15 N) and carbon (δ 13 C) for M. alfredi differed by year, but did not vary by sex or life stage, suggesting that all individuals occupy the same trophic niche at this coral reef. Furthermore, the isotopic signatures for M. alfredi differed to those for co-occurring planktivorous fish species also sampled at D'Arros Island and St. Joseph Atoll, suggesting that the ecological niche of M. alfredi is unique. Pelagic zooplankton were the main contributor (45%) to the diet of M. alfredi , combined with emergent zooplankton (38%) and mesopelagic prey items (17%). Given the extent of movement that would be required to undertake this foraging strategy, individual M. alfredi are implicated as important vectors of nutrient supply around and to the coral reefs surrounding D'Arros Island and St. Joseph Atoll, particularly where substantial site fidelity is displayed by these large elasmobranchs.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-19
    Description: Much is known regarding the evolution of colour vision in nearly every vertebrate class, with the notable exception of the elasmobranchs. While multiple spectrally distinct cone types are found in some rays, sharks appear to possess only a single class of cone and, therefore, may be colour blind. In this study, the visual opsin genes of two wobbegong species, Orectolobus maculatus and Orectolobus ornatus , were isolated to verify the molecular basis of their monochromacy. In both species, only two opsin genes are present, RH1 (rod) and LWS (cone), which provide further evidence to support the concept that sharks possess only a single cone type. Examination of the coding sequences revealed substitutions that account for interspecific variation in the photopigment absorbance spectra, which may reflect the difference in visual ecology between these species.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-10-12
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-09-29
    Description: The topography of the neurons in the retinal ganglion cell layer of juvenile black bream Acanthopagrus butcheri changes during development. The region of high cell density, the area centralis (AC), relocates from a temporal (central) to a dorsal (peripheral) position within the dorso-temporal retinal quadrant. Toascertain whether the differences in the position of the AC during development are related to feeding behaviour, we monitored fishes that were given a choice of food. A range of feeding behaviour patterns was recorded in individual fishes. The smallest fishes (8-15mm standard length (SL)) took live food from the water column. Following weaning onto pellets, fishes exhibited a preference for taking food from either the substrate or the surface (but not both).When greater than 20 mm SL, a number of individuals then divided their time between surface and substrate feeding before all fishes became exclusive benthic feeders at a stage between 50 and 80 mm SL. Three individual fishes, for which behaviour patterns were categorized, were killed and the topography of the retinal ganglion cell layer analysed. A range of positions for the AC was found with the smallest fish (12mm SL) possessing a region of high cell density in the temporal retina. In a larger fish (70 mm SL), feeding from both the substrate and the surface, the AC was found in an intermediate dorso-temporal position. The AC of a fish (51mm SL) preferentially taking food from the substrate was located in a dorsal position.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-12
    Description: Aquatic habitats are rich in polarized patterns that could provide valuable information about the environment to an animal with a visual system sensitive to polarization of light. Both cephalopods and fishes have been shown to behaviourally respond to polarized light cues, suggesting that polarization sensitivity (PS) may play a role in improving target detection and/or navigation/orientation. However, while there is general agreement concerning the presence of PS in cephalopods and some fish species, its functional significance remains uncertain. Testing the role of PS in predator or prey detection seems an excellent paradigm with which to study the contribution of PS to the sensory assets of both groups, because such behaviours are critical to survival. We developed a novel experimental set-up to deliver computer-generated, controllable, polarized stimuli to free-swimming cephalopods and fishes with which we tested the behavioural relevance of PS using stimuli that evoke innate responses (such as an escape response from a looming stimulus and a pursuing behaviour of a small prey-like stimulus). We report consistent responses of cephalopods to looming stimuli presented in polarization and luminance contrast; however, none of the fishes tested responded to either the looming or the prey-like stimuli when presented in polarization contrast.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-12
    Description: Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinalbauplanto be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...