ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Taylor & Francis  (1)
  • 1
    Publication Date: 2019-09-23
    Description: In order to investigate fractionation of calcium (Ca) isotopes in vertebrates as a diagnostic tool to detect Ca metabolism dysfunction we analyzed the Ca isotopic composition (δ44/40Ca = [(44Ca/40Ca)sample/(44Ca/40Ca)reference]−1) of diet, faeces, blood, bones and urine from Göttingen minipigs, an animal model for human physiology. Samples of three groups were investigated: 1. control group (Con), 2. group with glucocorticosteroid induced osteoporosis (GIO) and 3. group with Ca and vitamin D deficiency induced osteomalacia (−CaD). In contrast to Con and GIO whose average δ44/40Cafaeces values (0.39 ± 0.13‰ and 0.28 ± 0.08‰, respectively) tend to be lower than their diet (0.47 ± 0.02‰), δ44/40Cafaeces of −CaD (−0.27 ± 0.21‰) was significantly lower than their δ44/40Cadiet (0.37 ± 0.03‰), but also lower than δ44/40Cafaeces of Con and GIO. We suggest that the low δ44/40Cafaeces of −CaD might be due to the contribution of isotopically light Ca from gastrointestinal fluids during gut passage. Assuming that this endogenous Ca source is a common physiologic feature, a fractionation during Ca absorption is also required for explaining δ44/40Cafaeces of Con and GIO. The δ44/40Caurine of all groups are high (〉2.0‰) reflecting preferential renal reabsorption of light Ca isotopes. In Göttingen minipigs we found a Ca isotope fractionation between blood and bones (Δ44/40Cablood-bone) of 0.68 ± 0.15‰.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...