ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 49 (1991), S. 527-541 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present a detailed comparison of high statistics measurements of the structure functionF 2(x, Q 2) from deep inelastic scattering of charged leptons on hydrogen and deuterium targets. It is found that the CERN results from the EMC and BCDMS Collaborations are both compatible with the lowQ 2 electron scattering results from SLAC after an adjustment of the relative normalizations. We discuss the residual discrepancy between EMC and BCDMS which persists after this renormalization and find that the SLAC data are in better agreement with the steeperx dependence of the BCDMS results. A phenomenological parametrization ofF 2(x, Q 2) is given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 24 (1985), S. 22-33 
    ISSN: 1435-1528
    Keywords: Normal-stress effect ; second-order theory ; method of finite elements ; surface deformation ; rheometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: Abstract Some kind of Weissenberg effect is considered where the viscoelastic fluid, being within a cylindrical vessel, is set in motion by a rotating disc near the tank bottom. Because of normal-stress differences within the fluid a secondary flow arises which is directed upwards near the axis of symmetry, and thus the free surface is deformed. Under the assumption of sufficiently slow flow a second-order theory is developed. It leads to second-order and fourth-order elliptic boundary value problems for the velocity field in azimuthal direction and for the stream function of the secondary flow, respectively. Equivalent variational problems are formulated and solved by the method of finite elements. When normalized appropriately, the shape of the free surface consists of three shape functions, which are independent of any material constants. It is shown by corresponding experiments, that the zero-shear-rate normal-stress coefficients can be determined by measuring the displacement of the free surface. In this rheometer, the surface tension of the fluid causes only insignificant influence on the quantity to be measured.
    Notes: Zusammenfassung Es wird eine modifizierte Form des Weissenberg-Effekts untersucht, wobei sich die viskoelastische Flüssigkeit in einem kreiszylindrischen Gefäß befindet, an dessen Boden eine Scheibe rotiert. Normalspannungsdifferenzen rufen in der Flüssigkeit eine Strömung hervor, die auf der Drehachse von unten nach oben gerichtet ist, und die freie Oberfläche wölbt sich nahe der Achse nach außen. Unter der Voraussetzung hinreichend langsamer Strömung wird eine Theorie zweiter Ordnung entwickelt. Sie führt auf elliptische Randwertaufgaben zweiter bzw. vierter Ordnung für das Geschwindigkeitsfeld der Primärströmung in Umfangsrichtung und für die Stromfunktion der Sekundärströmung in der Meridianebene. Ihnen werden äquivalente Variationsaufgaben zugeordnet und mit der Methode der Finiten Elemente numerisch gelöst. Die Gestalt der freien Oberfläche setzt sich bei geeigneter Normierung aus drei universellen Formfunktionen zusammen, die für verschiedene Füllhöhen berechnet werden. Im experimentellen Teil wird nachgewiesen, daß durch entsprechende Messungen der Auslenkung des Flüssigkeitsspiegels die unteren Grenzwerte der beiden Normalspannungskoeffizienten bestimmt werden können. Das Rheometer besitzt den Vorzug, daß die Oberflächenspannung der Flüssigkeit die Meßgröße nur unwesentlich beeinflußt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 8 (1920), S. 907-907 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract.  A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049 and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966–1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. However, using both the greenhouse gas and the combined forcing fingerprints in a two-pattern analysis, a substantially better agreement between observations and the climate model prediction is found for the combined forcing simulation. Anticipating that the influence of the aerosol forcing is strongest for longer term temperature trends in summer, application of the detection and attribution test to the latest observed 50-y trend pattern of summer temperature yielded statistical consistency with the greenhouse gas-plus-aerosol simulation with respect to both the pattern and amplitude of the signal. In contrast, the observations are inconsistent with the greenhouse-gas only climate change signal at a 95% confidence level for all estimates of climate variability. The observed trend 1943–1992 is furthermore inconsistent with a hypothesized solar radiation change alone at an estimated 90% confidence level. Thus, in contrast to the single pattern analysis, the two pattern analysis is able to discriminate between different forcing hypotheses in the observed climate change signal. The results are subject to uncertainties associated with the forcing history, which is poorly known for the solar and aerosol forcing, the possible omission of other important forcings, and inevitable model errors in the computation of the response to the forcing. Further uncertainties in the estimated significance levels arise from the use of model internal variability simulations and relatively short instrumental observations (after subtraction of an estimated greenhouse gas signal) to estimate the natural climate variability. The resulting confidence limits accordingly vary for different estimates using different variability data. Despite these uncertainties, however, we consider our results sufficiently robust to have some confidence in our finding that the observed climate change is consistent with a combined greenhouse gas and aerosol forcing, but inconsistent with greenhouse gas or solar forcing alone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different ”snapshots" of the control run climate. The radiative forcing – the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A – was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the ”between-experiment" variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 71-84 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this “cold start” error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent C02 concentrations stipulated in Scenario A (“Business as Usual”) of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990–2000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45°N and 45°S, the signal detection times are in the decades 2015–2025 and 2005–2015, respectively. The reduction of the “cold start” error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract.  Two simulations with a global coupled ocean-atmosphere circulation model have been carried out to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability and an increase in greenhouse gases both induce to a first approximation a comparable pattern of surface temperature change, i.e., an increase of the land-sea contrast. However, the solar-induced warming pattern in annual means and summer is more centered over the subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. The observed temperature rise over the most recent 30 and 100 years is larger than the trend in the solar forcing simulation during the same period, indicating a strong likelihood that, if the model forcing and response is realistic, other factors have contributed to the observed warming. Since the pattern of the recent observed warming agrees better with the greenhouse warming pattern than with the solar variability response, it is likely that one of these factors is the increase of the atmospheric greenhouse gas concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 14 (1998), S. 249-266 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  A new periodically synchronous coupling scheme has been applied to an atmosphere-ocean general circulation model. Due to a temporary switching off of the atmospheric model this scheme can considerably reduce computer requirements of coupled model experiments. In order to evaluate the new coupling scheme the model results are compared to corresponding synchronously coupled integrations. Experiments with fixed present-day CO2 concentration and a gradual increase of CO2 show a good reproduction of the mean state and the climate-change pattern, respectively. The deviations from the synchronously coupled experiments are in the range of the variability of the corresponding synchronously coupled runs. Due to the forcing during the ocean-only periods the short-term fluctuations are underestimated and the long-term variability is overestimated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...