ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-11-01
    Description: We use $$ mathcal{N} $$ N = 8 supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at $$ mathcal{O} $$ O (G3) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known D-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Bern et. al. in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order.
    Print ISSN: 1126-6708
    Electronic ISSN: 1029-8479
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-01
    Description: We compute classical gravitational observables for the scattering of two spinless black holes in general relativity and $$ mathcal{N} $$ N =8 supergravity in the formalism of Kosower, Maybee, and O’Connell (KMOC). We focus on the gravitational impulse with radiation reaction and the radiated momentum in black hole scattering at $$ mathcal{O} $$ O (G3) to all orders in the velocity. These classical observables require the construction and evaluation of certain loop-level quantities which are greatly simplified by harnessing recent advances from scattering amplitudes and collider physics. In particular, we make use of generalized unitarity to construct the relevant loop integrands, employ reverse unitarity, the method of regions, integration-by-parts (IBP), and (canonical) differential equations to simplify and evaluate all loop and phase-space integrals to obtain the classical gravitational observables of interest to two-loop order. The KMOC formalism naturally incorporates radiation effects which enables us to explore these classical quantities beyond the conservative two-body dynamics. From the impulse and the radiated momentum, we extract the scattering angle and the radiated energy. Finally, we discuss universality of the impulse in the high-energy limit and the relation to the eikonal phase.
    Print ISSN: 1126-6708
    Electronic ISSN: 1029-8479
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...