ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 20 (1998), S. 293-311 
    ISSN: 1573-0581
    Keywords: Western Australia ; volcanic rifted margin ; rheology ; magmatic underplating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Interpretation of deep seismic reflection data across the Gascoyne Margin reveals six distinct seismic facies units related to the tectono-magmatic breakup history. On the outer Exmouth Plateau four large scale units are identified: (1) an extensively block-faulted upper crust; (2) a middle-crustal unit of discontinuous, undulatory reflectors; (3) a reflection-free deep crustal unit; and (4) a lower-crustal band of low-frequency, high-amplitude reflectors. Two additional units are found near the continent-ocean boundary (COB); (5) seaward-dipping reflectors (SDR); and (6) landward-dipping reflectors in the lower crust below the SDR. The lower-crustal high-reflectivity band, located near the top of a high-velocity unit (Vp 〉 7 kms−1), is interpreted as magmatic underplating. There is a spatial correlation between the underplated area and the presence of extensive upper-crustal block-faulting and intrusive rocks in the shallow crust. The undulatory middle-crustal reflector unit is also only identified in the outer plateau area, and is interpreted as a zone in which the upper-crustal faults terminate. The inner parts of the margin consist of a deep basin showing little upper-crustal faulting and no evidence of middle crustal deformation or underplating. Theoretical modeling of the effect of rifting and magmatic underplating on crustal strength profiles suggests that the brittle-ductile transition may migrate at least 5 km upwards during several million years after the underplating event. Based on the seismic interpretation and crustal strength modeling we propose that the seismic structure of the outer Exmouth Plateau is severely modified by a transient change in the crustal rheological structure associated with magmatic underplating.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...