ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8773
    Keywords: EF-hand ; Ca 2+ -binding protein ; Ca 2+ signaling ; protein structure ; calmodulin ; signal transduc-tion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The growing database of three-dimensional structures of EF-hand calcium-binding proteins is revealing a previously unrecognized variability in the coformations and organizations of EF-hand binding motifs. The structures of twelve different EF-hand proteins for which coordinates are publicly available are discussed and related to their respective biological and biophysical properties. The classical picture of calcium sensors and calcium signal modulators is presented, along with variants on the basic theme and new structural paradigms.© Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5001
    Keywords: DNA repair ; DNA replication ; NMR assignments ; RPA ; secondary structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5001
    Keywords: Proteins ; Nuclear spin relaxation ; Rotational diffusion tensor anisotropy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Current methods of determining the rotational diffusion tensors of proteins in solution byNMR spectroscopy exclusively utilize relaxation rate constants for backbone amide 15N spins.However, the distributions of orientations of N-H bond vectors are not isotropic in manyproteins, and correlations between bond vector orientations reduce the accuracy and precisionof rotational diffusion tensors extracted from 15N spin relaxation data. The inclusion of both13Cα and 15N spin relaxation rate constants increases the robustness of the diffusiontensor analysis because the orientations of the Cα-Hα bond vectors differ from theorientations of the N-H bond vectors. Theoretical and experimental results for calbindin D9k,granulocyte colony stimulating factor, and ubiquitin, three proteins with different distributionsof N-H and Cα-Hα bond vectors, are used to illustrate the advantages of thesimultaneous utilization of 13Cα and 15N relaxation data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 11 (1998), S. 45-57 
    ISSN: 1573-5001
    Keywords: chemical shift ; protein structural homology ; resonance assignments ; secondary chemical shift ; sequence homology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of Cα protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5001
    Keywords: calcium-binding protein ; calcyclin ; protein structure ; S100 protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The three-dimensional solution structure of apo rabbit lung calcyclin has been refined to high resolution through the use of heteronuclear NMR spectroscopy and 13C,15N- enriched protein. Upon completing the assignment of virtually all of the 15N, 13C and 1H NMR resonances, the solution structure was determined from a combination of 2814 NOE- derived distance constraints, and 272 torsion angle constraints derived from scalar couplings. A large number of critical inter- subunit NOEs (386) were identified from 13C- select,13C-filtered NOESY experiments, providing a highly accurate dimer interface. The combination of distance geometry and restrained molecular dynamics calculations yielded structures with excellent agreement with the experimental data and high precision (rmsd from the mean for the backbone atoms in the eight helices: 0.33 Å). Calcyclin exhibits a symmetric dimeric fold of two identical 90 amino acid subunits, characteristic of the S100 subfamily of EF-hand Ca2+-binding proteins. The structure reveals a readily identified pair of putative sites for binding of Zn2+. In order to accurately determine the structural features that differentiate the various S100 proteins, distance difference matrices and contact maps were calculated for the NMR structural ensembles of apo calcyclin and rat and bovine S100B. These data show that the most significant variations among the structures are in the positioning of helix III and in loops, the regions with least sequence similarity. Inter-helical angles and distance differences for the proteins show that the positioning of helix III of calcyclin is most similar to that of bovine S100B, but that the helix interfaces are more closely packed in calcyclin than in either S100B structure. Surprisingly large differences were found in the positioning of helix III in the two S100B structures, despite there being only four non-identical residues, suggesting that one or both of the S100B structures requires further refinement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5001
    Keywords: Calcium-binding proteins ; Protein structure ; Restrained molecular dynamics ; Solvated refinement ; Structure refinement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The three-dimensional solution structures of proteins determinedwith NMR-derived constraints are almost always calculated in vacuo. Thesolution structure of (Ca2+)_2-calbindinD9k has been redetermined by new restrained molecular dynamics(MD) calculations that include Ca2+ ions and explicit solventmolecules. Four parallel sets of MD refinements were run to provide accuratecomparisons of structures produced in vacuo, in vacuo withCa2+ ions, and with two different protocols in a solvent bathwith Ca2+ ions. The structural ensembles were analyzed interms of structural definition, molecular energies, packing density,solvent-accessible surface, hydrogen bonds, and the coordination of calciumions in the two binding loops. Refinement including Ca2+ ionsand explicit solvent results in significant improvements in the precisionand accuracy of the structure, particularly in the binding loops. Theseresults are consistent with results previously obtained in free MDsimulations of proteins in solution and show that the rMD refinedNMR-derived solution structures of proteins, especially metalloproteins, canbe significantly improved by these strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...