ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 20 (1992), S. 477-500 
    ISSN: 1573-8744
    Keywords: pharmacokinetic models ; linear system analysis ; chronopharmacokinetics ; circadian rhythm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Clinically, it is known that some disease states respond to drug treatment in a cyclic manner. This has resulted in qualitatively, or empirically, determined cyclically varying drug treatment studies which have been shown to improve therapeutic response in some cases. A theory is developed, for drugs that can be described by pure catenary pharmacokinetic models, which enables one to quantitatively determine at what time a cyclic infusion of drug should be initiated, what the frequency of infusion should be, and what the amplitude of the infusion should be to obtain maximum therapeutic benefit at steady state. Also, the theory allows one to determine quantitatively a priori if a drug's pharmacokinetics precludes the possibility of any real advantage to be gained by cyclically infusing the drug. To implement the theory, it is assumed that the drug obeys linear pharmacokinetics and that the desired pharmacological response is rapid and approximately proportional to a pharmacokinetic compartmental concentration. In particular, a linear system analysis approach is applied to drugs obeying linear pharmacokinetics. It is found that at steady state the amplitude, of the sinusoidally varying component of drug's compartmental concentration can be expressed as the amplitude of the rate of infusion times the magnitude of the compartment's transfer function. In addition, an expression for the shift in phase (lag time) of the compartmental drug concentration, relative to the input infusion, is obtained. For a one-compartment model, or for a compartment containing the site of infusion, the amplitude of the sinusoidally varying component ultimately declines in direct proportion to the period (T) of oscillation and the lag time increases from 0 to −0.25T as the period decreases. At a short enough cyclic infusion period, the lag time increments by an additional value of −0.25T, and the attenuation in sinusoidal amplitude decreases by an additional factor of T, for each compartment sequentially connected down the chain from the compartment receiving the infusion. This theory is then applied to the drugs, 5- fluorouracil, KS1/4- DAVLB, theophylline, and adriamycin to see if sinusoidal modulation of the infusion rate would be of therapeutic benefit. The theoretical predictions are then compared to clinically determined empirical results and shown to be consistent. In general, it is shown that the micro rate constants describing the drug's pharmacokinetics must be large (i.e., the system must be able to respond rapidly) for sinusoidal infusion to be of value.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: oleic acid ; penetration enhancer ; Fourier Transform Infrared Spectroscopy (FT-IR) ; lipid phase-separation transport mechanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (T m) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their T m. At temperatures lower than T m, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid T m in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion. In this mechanism, the enhanced transport of polar molecules across the SC can be explained by the formation of permeable interfacial defects within the SC lipid bilayers which effectively decrease either the diffusional path length or the resistance, without necessarily invoking the formation of frank pores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...