ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 17 (1996), S. 23-30 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper deals with the prediction of the soil water retention h(S) and the soil unsaturated hydraulic conductivity K(S) functions of a clay-loam soil at a field scale (1 ha) where the variable S represents water saturation. The Van Genuchten model and the corresponding Mualem-Van Genuchten model were used to predict h(S) and K(S) functions respectively. The field data (tensiometric and neutron probe measurements) used in this study were provided by the soil water balance (four neutron sites, 0.35 to 1.55 m soil layer) of a soybean crop over a 78 days growing season. The advantages of the scaling approach for describing the field variability of the h(S) function were confirmed. The scaling approach accounted for 73% of the field variability of the soil matrix potential. A simple procedure was proposed in order to predict the K(S) function using scaling theory. This was done by simultaneously applying a ``zero flux method'' and ``deep flux method'' to compute the soil water balance and fit the saturated hydraulic conductivitiy (K sat), the only unknown parameter in K(S).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 14 (1994), S. 105-115 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract When the soil water balance method is applied at a field scale, estimation of the spatial variability and confidence interval of actual evapotranspiration is rare, although this method is sensitive to the spatial variability of the soil, and thus to the sampling strategy. This work evaluated the effect of soil sampling strategies for soil water content and water flux at the bottom of the soil profile on the estimation of the daily and cumulative evapotranspirations. To do that, according to the statistical properties of daily measurements in a field experiment with a soybean crop, the water content and flux through the base to the soil profile in space (field scale) and time (daily scale) were simulated. Four different sampling strategies were then compared, and their effects on daily and seasonal cumulative evapotranspirations quantified. Strategy 1 used ten theoretical sites randomly located in the field. The daily water content estimates were assumed to be available each day from these same ten locations, which were located from 0.15 m to 1.55 m in depth, with space steps of 0.10 m. Strategy 2 assumed that daily water content estimates combined two sources: in the 0.00–0.20 m soil layer, ten theoretical sites were selected but changed every day, with thin soil layers for soil moisture sampling, from 1 to 5 cm in thickness. In the 0.20–1.60 m soil layer, the daily water content estimates were assumed to come from the same ten locations (the first soil moisture estimate was located at 0.25 m, and the others were located every 0.10 m until 1.55 m). Strategy 3 used ten theoretical sites located in the field, as in strategy 1, however the water content estimates in the 0.00–0.20-m soil layer were assumed to come from accurate water content measurements (soil layers from 1 to 5 cm in thickness), while for the 0.20–1.60 m soil layer, the strategy was similar to strategies 1 and 2. Strategy 4 used 10 new theoretical locations of measurement every day. Precise water content estimates for thin layers were assumed to be available in the 0.00–0.20 m soil layer as in strategy 2. The layers for water content estimates in the 0.20–1.60 m were similar to those of strategies 1, 2, and 3. Results showed that the spatial variability of the daily actual evapotranspiration may not be negligible, and differences from approximately ±1.0 mm d −1 to ±3.0 mm d −1 were calculated between the four sampling strategies. Strategy 1 gave the worst results, because variations in the water content of the top soil layers were neglected, and thus the daily evapotranspiration was underestimated. Strategy 2 led to a considerable variability for estimating daily evapotranspiration which was explained by the effect of the spatial variability due to the daily site sampling for the top soil layers (0 to 0.2 m). Strategy 3 appeared to be the best practical compromise between practical field considerations and the necessity to obtain accurate evapotranspiration measurements. The accuracy of daily evapotranspiration could reach ± 0.5 mm d−1, and could be further improved by increasing the number of measurement sites. The best results were obtained with strategy 4, although such a destructive and time-consuming strategy is not likely to be practical.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...