ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 135 (1999), S. 212-224 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract This study examines the fluid-rock interaction and thermal evolution along a thrust that juxtaposes calcite-rich marbles of high P-T metamorphic unit of the Attic-Cycladic Massif (Greece) on top of a lower-grade dolomite marble unit. The Tertiary thrust represents a major phase of tectonic movement related to the decompression of the Alpine orogen in the Hellenides. The stable isotope signatures of the thrust plane and adjacent sections of the footwall and hanging wall rocks are characterized by significant carbon and oxygen isotope depletions. The depletion is most pronounced in calcite, but is almost entirely missing in coexisting dolomite. The isotopic patterns in the thrust zone can be explained by the infiltration of an externally derived water-rich H2O-CO2-CH4 fluid [X C (=X CO 2+X CH 4)〈0.05] at water-rock ratios on the order of 0.1 to 0.5 by weight. The fluid-induced calcite recrystallization is viewed as an important rheological control during thrusting. The temperature evolution of the footwall, hanging wall and mylonitic tectonic contact was determined by calcite-dolomite solvus thermometry. Histograms of calcite-dolomite temperatures are interpreted as indicating a heating of the footwall dolomite marble during the thrusting of the hotter upper plate. Conversely, the hanging wall marble unit was cooled during the thrusting. The calcite-dolomite thermometry of the thrust plane gives temperatures intermediate between the initial temperatures of the lower and upper marble units, and this leads to the conclusion that conductive heat transfer rather than fluid infiltration controlled the thermal evolution during thrusting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 87 (1998), S. 314-325 
    ISSN: 0016-7835
    Keywords: Key words Collisional orogen ; Concave orogenic wedge ; Lithospheric flexure ; Modelling tectonic loads ; Proforeland basin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Along the Caledonian front in central Scandinavia, the expected peripheral or pro-foreland basin is neither physically present nor are there any significant traces in the sedimentary record. In order to explain and quantify this situation, the authors assess the major geometric and mechanical constraints on the Caledonian orogenic wedge and model the orogenic load and its influence on the foreland lithosphere of Baltica. Geologic and geophysical data show a strong foreland lithosphere with a flexural parameter (α) of approximately 100 km. The shape of the orogenic wedge and its critical taper angle are dependent mainly on basal friction and wedge strength. In the external part organic-rich black shales provide a low-friction horizon both at the basal detachment surface and within the wedge itself. The more internal part of the wedge is composed of metamorphic and crystalline rocks, which cooled and strengthened prior to thrusting. As a result, the external part of the wedge had a lower strength and a smaller critical taper angle than its internal part, so the orogenic load is upward concave. Modelling of the effect of such a load on the Baltica lithosphere shows a very small depression in front of the load (2 km). The flexural depression produced by the main part of the orogenic load is filled up by the thickening thrust-and-fold belt, so that there is little space left for a foreland basin. These results imply that the missing foreland basin in front of the central Scandinavian Caledonides is not due to subsequent erosion, but is a primary feature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-05-17
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-12-14
    Print ISSN: 0016-7835
    Electronic ISSN: 1432-1149
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...