ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • model  (1)
  • turbidity  (1)
  • Springer  (2)
Collection
Publisher
  • Springer  (2)
Years
  • 1
    ISSN: 1573-5125
    Keywords: Suspended sediment ; model ; estuary ; Tagus ; Scheldt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A numerical model to simulate the transport of suspended sediment in tidal estuaries is presented. The model is applied to the two large European estuaries the Tagus (Portugal) and the Scheldt (Belgium-The Netherlands). Calculated suspended sediment concentrations compare favourably with observations in the Tagus (r=0.84) and in the Scheldt (r=0.73). The parametrization scheme indicates that the bottom content of fine sediment is correlated with depth in the Tagus; but a different relationship is used in the Scheldt. Because of tidal range differences, average suspended sediment concentrations are lower in the Tagus (80 mg l−1) than in the Scheldt (130 mg l−1), but a larger relative variation between spring and neap tide concentrations may occur in the Tagus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic ecology 28 (1994), S. 337-345 
    ISSN: 1573-5125
    Keywords: Cohesive sediments ; numerical modelling ; turbidity ; Western Scheldt estuary
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cohesive sediment transport model considering the effects of flocculation, deposition and erosion is used in an attempt to simulate the suspended sediment distribution in a mesotidal estuary. The numerical model solves the three-dimensional (3D) advection-diffusion equation using a two-time level scheme, and a semi-implicit finite difference approach. The transport model is coupled to a 3D-barotropic hydrodynamic model for the simulation of the major tidal components reproducing the non-linear effects. An application of these models in the Western Scheldt estuary is described. The results of the different tests show that the adopted approach provides a useful basis for a good understanding of the physical processes involved in sediment transport and for the study of practical problems. The sensitivity of the model to key parameters controlling the simulation of bed sediment/water exchanges, shows the importance of a good definition of bottom sediment characteristics and the importance of further development of a consolidation algorithm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...