ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: cDNA sequence ; gene expression ; glutamine synthetase ; phytochrome ; Solanaceae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A full-length cDNA encoding glutamine synthetase (GS) was cloned from a λgt10 library of tobacco leaf RNA, and the nucleotide sequence was determined. An open reading frame accounting for a primary translation product consisting of 432 amino acids has been localized on the cDNA. The calculated molecular mass of the encoded protein is 47.2 kDa. The predicted amino acid sequence of this precursor shows higher homology to GS-2 protein sequences from other species than to a leaf GS-1 polypeptide sequence, indicating that the cDNA isolated encodes the chloroplastic isoform (GS-2) of tobacco GS. The presence of C-and N-terminal extensions which are characteristic of GS-2 proteins supports this conclusion. Genomic Southern blot analysis indicated that GS-2 is encoded by a single gene in the diploid genomes of both tomato and Nicotiana sylvestris, while two GS-2 genes are very likely present in the amphidiploid tobacco genome. Western blot analysis indicated that in etiolated and in green tomato cotyledons GS-2 subunits are represented by polypeptides of similar size, while in green tomato leaves an additional GS-2 polypeptide of higher apparent molecular weight is detectable. In contrast, tobacco GS-2 is composed of subunits of identical size in all organs examined. GS-2 transcripts and GS-2 proteins could be detected at high levels in the leaves of both tobacco or tomato. Lower amounts of GS-2 mRNA were detected in stems, corolla, and roots of tomato, but not in non-green organs of tobacco. The GS-2 transcript abundance exhibited a diurnal fluctuation in tomato leaves but not in tobacco leaves. White or red light stimulated the accumulation of GS-2 transcripts and GS-2 protein in etiolated tomato cotyledons. Far-red light cancelled this stimulation. The red light response of the GS-2 gene was reduced in etiolated seedlings of the phytochrome-deficient aurea mutant of tomato. These results indicate a phytochrome-mediated light stimulation of GS-2 gene expression during greening in tomato.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: blue/UV-A-light ; gene expression ; glutamine synthetase ; phytochrome ; tomato aurea mutant ; UV-B-light
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photomorphogenetic aurea mutant of tomato severely deficient in spectrophotometrically active phytochromes was used to study the light-regulation of the single-copy nuclear gene encoding plastidic glutamine synthetase (GS-2; EC 6.1.3.2). The de-etiolation of dark-grown aurea mutant seedling cotyledons showed an obligatory dependency on blue light. A limited red light-responsiveness of etiolated aurea cotyledons is, however, retained as seen by the stimulation of both the GS-2 transcript and protein level in the cotyledons of aurea seedlings during growth in red light. The subunits of the octameric GS-2 enzyme were represented by polypeptides with similar electrophoretic mobilities (polypeptides a) in etiolated wild-type or aurea mutant cotyledons. GS-2 proteins with similar apparent molecular masses were also seen in the cotyledons of red light-grown aurea mutant seedlings. In contrast, GS-2 polypeptides with different apparent molecular masses (polypeptides a and b) were detected in the cotyledons of wild-type seedlings grown in red light. This difference indicates that the (post-translational) modification of tomato GS-2 subunit composition is mediated by the photoreceptor phytochrome. The illumination of etiolated wild-type or aurea cotyledons with UV-A- or UV-B-light light resulted in an increase in both the GS-2 transcript and protein level. Following illumination of etiolated wild-type seedlings with UV-A-light, the relative proportion of the GS-2 polypeptides a and b was similar than upon irradiation with blue light but different than after exposure to UV-B- or red light. This result suggests the involvement of a blue/ UV-A-light-specific photoreceptor in the regulation of tomato GS-2 subunit composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...