ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 3 (1995), S. 205-213 
    ISSN: 1572-8900
    Keywords: Starch ; poly(β′-hydroxybutyrate-co-β-hydroxyvalerate) ; poly(hydroxyalkanoates) ; plastic ; blends ; composite ; biodegradation ; activated sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Injection-molded composites were prepared by blending PHBV5 with native cornstarch (30% and 50%) and with cornstarch precoated with PEO as a binding agent. These composites were evaluated for their biodegradability in municipal activated sludge by measuring changes in their physical and chemical properties over a period of 35 days. All composites lost weight, ranging from 45 to 78% within 35 days. Interestingly, the extent and rate of weight loss were quite similar in PHBV composites with no starch, with 30% starch, and with 50% starch. Weight loss was slowest in PHBV blends prepared with PEO-coated starch. For all samples, the weight loss was accompanied by a rapid deterioration in tensile strength and percentage elongation. The deterioration of these mechanical properties exhibited a relative rate of PHBV〉starch-PHBV〉PEO-coated starch-PHBV. Changes in starch/PHBV composition after biodegradation were quantified by FTIR spectroscopy. Increasing the starch content resulted in more extensive starch degradation, while the PHBV content in the blends became less susceptible to hydrolytic enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 3 (1995), S. 107-113 
    ISSN: 1572-8900
    Keywords: Starch degradation ; starch-plastic ; composite ; starch hydrolysis ; amylase(s)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Most of the starch in starch-polyethylene-co-acrylic acid (EAA)-polyethylene (PE) composites prepared by injection molding was not accessible to starch-hydrolyzing enzymes. Even when these composites were treated with enzyme in the presence of Triton X-100 for 96 h, little starch hydrolysis was observed. However, when the starch-plastic material was pulverized, both the extent and the rate of starch hydrolysis increased dramatically, with about 70% hydrolysis of the starch within 18 h. Reactions carried out for up to 96 h showed that, while the enzyme was active, the reaction reached a plateau, achieving a total of 80% starch hydrolysis. Fourier transform infrared (FTIR) spectroscopy revealed that only starch, and not EAA or PE, was affected by enzyme in pulverized samples. Results indicated that while 80% of the starch in these composites was transiently inaccessible, perhaps due to EAA and PE forming an impermeable barrier to the enzyme, the other 20% remained inaccessible to enzymes. Also, the rate of starch digestion as determined by solubilized reducing sugar correlated with the particle size of the pulverized material, suggesting that a large available surface area is critical for rapid starch degradation in such composites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...