ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Volcanic dike pattern  (1)
  • mathematics  (1)
  • stress state transition.  (1)
  • Springer  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 115 (1977), S. 69-86 
    ISSN: 1420-9136
    Keywords: Stress field regional ; Volcanic dike pattern ; Paleopiezometer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The radial pattern of syenite and syenodiorite dikes of the Spanish Peaks region is analysed using theories of elasticity and dike emplacement. The three basic components of Odé's model for the dike pattern (a pressurized, circular hole; a rigid, planar boundary; and uniform regional stresses) are adopted, but modified to free the regional stresses from the constraint of being orthogonal to the rigid boundary. Dike areal density, the White Peaks intrusion, the strike of the upturned Mesozoic strata, and the contact between these strata and the intensely folded and faulted Paleozoic rocks are used to brient the rigid boundary along a north-south line. The line of dike terminations locates the rigid boundary about 8 km west of West Peak. The location of a circular plug, Goemmer Butte, is chosen as a point of isotropic stress. A map correlating the location of isotropic stress points with regional stress parameters is derived from the theory and used to determine a regional stress orientation (N82E) and a normalized stress magnitude. The stress trajectory map constructed using these parameters mimics the dike pattern exceptionally well. The model indicates that the regional principal stress difference was less than 0.05 times the driving pressure in the West Peak intrusion. The regional stress difference probably did not exced 5 MN/m2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 103 (2000), S. 373-395 
    ISSN: 1573-2673
    Keywords: Critical fracture spacing to layer thickness ratio ; edge fractures ; finite element modeling ; layered materials ; stability of fracture propagation ; stress state transition.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Opening-mode fractures developed from a free surface in a layered material often terminate at the interface that divides the fractured layer and the underlying layer. They also display regular spacing that is of the same order of magnitude as the thickness of the fractured layer. We have investigated the stress distribution between two adjacent edge fractures as a function of the ratio of fracture spacing to thickness of the fractured layer using a two-layer elastic model with a fractured top layer. The results show that when the ratio of fracture spacing to the layer thickness changes from greater than to less than a critical value the normal stress acting perpendicular to the fractures near the free surface changes from tensile to compressive. This stress state transition precludes further infilling of fractures unless they are driven by mechanisms other than a pure extension, or there are flaws that significantly perturb the local stress field between the fractures. Hence, the critical fracture spacing to layer thickness ratio defines a lower limit for fractures driven by extension, which also defines the condition of fracture saturation. The critical value of the fracture spacing to layer thickness ratio is independent of the average strain of the fractured layer, and it increases with increasing ratio of Young's modulus of the fractured layer to that of the underlying layer. The critical value increases with increasing Poisson's ratio of the fractured layer, but it decreases with increasing Poisson's ratio of the underlying layer. For the case with the same elastic constants for the fractured layer and the underlying layer, the critical spacing to layer thickness ratio is about 3.1. Delamination between the fractured layer and the underlying layer makes the critical spacing to layer thickness ratio much greater. Infilling fractures grow more easily from flaws located near the bottom of the fractured layer than from those located near the free surface when the spacing to layer thickness ratio is less than the critical value. The propagation of an edge flaw between adjacent edge fractures is unstable, but for the flaw to propagate to the interface, its height has to be greater than a critical size, that decreases with increasing fracture spacing to layer thickness ratio. The propagation behavior of an internal flaw with its lower tip at the interface depends on the edge fracture spacing to layer thickness ratio. The propagation is unstable, when the fracture spacing to layer thickness ratio is greater than a critical value; stable, when the fracture spacing to layer thickness ratio is less than another critical value; and first unstable, then stable, and/or unstable again, when the fracture spacing to layer thickness ratio is between these two critical values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical geology 5 (1973), S. 11-25 
    ISSN: 1573-8868
    Keywords: mathematics ; structural geology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Mathematics
    Notes: Abstract A mechanical model based upon elasticity theory for the deformation around a pressurized elliptical hole in an homogeneous, isotropic solid has found application in many areas of engineering, rock mechanics, and structural geology. The explicit equations for stress and displacement around such a hole are given. An apl computer program for calculating these stresses and displacements also is presented. These equations and this program should ease future usage of this model by engineers and geologists.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...