ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • east rift zone  (2)
  • Iava flows  (1)
  • Springer  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 56 (1994), S. 297-301 
    ISSN: 1432-0819
    Keywords: temperature measurements ; Iava flows ; spectral measurements ; Hawaii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A narrow band spectroradiometer was used to determine the characteristic temperatures of a very active channeled lava flow for the phase 50 eruption of Pu'u 'O'o on the East Rift Zone of Kilauea Volcano, Hawaii. During the twilight of 19 February 1992, 14 spectra of this activity were acquired over a 51 minute interval [18.29 to 19.20 Hawaiian Standard Time (HST)], from which the thermal distribution of energy of two 18 m2 areas, one near the center and one near the margin of the flow, may be investigated. A twocomponent thermal mixing model applied to the data taken of the center of the channel gave, in the most powerful instance (1.8x105 W/m2), a crust temperature of 940° C, a hot component temperature of 1120°C and a hot radiating area of 60% of the total area. A simultaneous spectrum acquired near the channeled flow margin yielded a crust temperature of 586° C and a hot area of only 1.2% of the total area radiating at 1130° C. Average radiant flux densities recorded for the center of the lava channel (1.3x105 W/m2 average) are much greater than previous measurements of lava lakes (4.9x103 W/m2) or recently emplaced lava flows (maximum of 7.2x104 W/m2). The energetic nature of this eruption is shown by satellite measurements made at 02.33 HST on 22 February 1992 by the Advanced Very High Resolution Radiometer in Band 2 (0.72–1.10 μm). These show the utility of using existing satellites with moderate resolution (1 km x 1 km pixels) and high temporal coverage (eight overpasses each day for Hawaii) as potential thermal alarms for rapidly assessing the hazard potential of large volcanic eruptions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Key words: Lava flow field ; Landsat Thematic Mapper ; flux density map ; Kilauea ; lava tubes ; east rift zone ; flow emplacement chronology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract. A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o–Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (〉3500) of thermally elevated near infrared (0.8–2.35 μm) pixels (each ∼900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (∼7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of ∼1.3 km2) within a much larger area of cooling flows (total ∼16 km2). The production of an 'average flux density map' from the TM data of the flow field, wherein the average flux density is defined in units of W m–2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (〉5000 W m–2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0819
    Keywords: Lava flow field ; Landsat Thematic Mapper ; flux density map ; Kilauea ; lava tubes ; east rift zone ; flow emplacement chronology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (〉3500) of thermally elevated near infrared (0.8–2.35 μm) pixels (each ∼900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (∼7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of ∼1.3 km2) within a much larger area of cooling flows (total∼16 km2). The production of an ‘average flux density map’ from the TM data of the flow field, wherein the average flux density is defined in units of Wm-2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (〉5000 Wm-2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...