ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Drosophila  (2)
  • Fluorescence microscopy  (2)
  • Tephritidae  (2)
  • Springer  (6)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 100 (1994), S. 196-199 
    ISSN: 1432-1939
    Keywords: Braconidae ; Tephritidae ; Temporal ; Synchrony
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We studied an imported host-parasitoid community in Hawaii, asking to what extent the species covaried in a systematic fashion even though all species were exotic to Hawaii, and occurred in an artificial agroecosystem (a commercial guava, Psidium guajava L., orchard). Using knock-down pyrethrin sprays we were able to accurately quantify numbers of the host, [oriental fruit fly, Bactrocera dorsalis (Hendel)] and its four major parasitoid species [Biosteres arisanus (Sonan), Diachasmimorpha longicaudata (Ashmead), Psyttalia incisi (Silvestri), and Bi. vandenboschi (Fullaway)] at hourly intervals. We found that the parasitoids' activity and abundance was well correlated with the activity and abundance of their host, and that all four parasitoid species covaried in concert with one another. In fact, the magnitude of correlation between the different species in this system was greater than the correlation with temperature. This show clearly that an entirely exotic community, reassembled piecemeal as a result of biocontrol efforts, can end up with patterns of temporal covariation that are highly coincident. One other interesting result concerns the speed with which sprayed trees were recolonized by the fruit fly and its parasitoids. The time that it took each species to reach its mean density prior to removal by the first pyrethrin spray at 0600 hours varied. It took 2 h for female B. dorsalis to recolonize guava trees to pre-spray levels. It took 3 h for Bi. arisanus, 4 h for D. longicaudata, 7 h for Bi. vandenboschi and 14 h for P. incisi to reach pre-spray levels. The fact that Bi. arisanus recolonized vacant trees almost as rapidly as did the fruit fly pest suggest that there is little opportunity for the fruit fly to escape in space and time by “staying one step ahead of its enemies”.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 126 (1972), S. 536-564 
    ISSN: 1432-0878
    Keywords: DANS-tryptophan ; Intraventricular injection ; Rat brain ; Fluorescence microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung Nach Injektion von DANS-Tryptophan in den III. Ventrikel von Ratten wurden Aufnahme und Verteilung der Aminosäure im Zentralnervensystem im Zeitexperiment fluoreszenzmikroskopisch untersucht. Folgende Befunde wurden erhoben: 1. Ependym. Das Ependym der Seitenventrikel, des III. Ventrikels und des Aquaedukts resorbiert DANS-Tryptophan bis 15 min p.i. Später ist in den Ependymzellen keine Fluoreszenz mehr zu beobachten. Alle Ependymzellen dieser Ventrikelabschnitte resorbieren das markierte Tryptophan in einheitlicher Weise. Das fluoreszierende Ependym ist gegen das subependymale Hirngewebe scharf abgegrenzt. Das Ependym des IV. Ventrikels dagegen bleibt fluoreszenzfrei. 2. Plexus chorioideus. Fluoreszenz tritt in den Plexusepithelien der Seitenventrikel und des III. Ventrikels 3 min p.i. auf. Sie ist länger als im Ependym zu beobachten und erlischt erst nach 120 min. Die Plexus chorioidei des IV. Ventrikels zeigen dagegen keine Fluoreszenz. 3. Hirngewebe. Nach der Resorption durch das Ependym wird DANS-Tryptophan mit zeitlichen Unterschieden an umschriebene Hirnareale abgegeben. Bevorzugt werden folgende Kerngebiete: Hypothalamus und Basalganglien (3 min p.i.); Septumkerne, periventrikuläre und praeoptische Kerne, graue Substanz um den Aquaedukt (5 min p.i.). Im Hippocampus, Gyrus dentatus und Thalamus erscheinen fluoreszierende Strukturen erst 10 und 20 min p.i. Das markierte Tryptophan tritt stellenweise in Perikaryen und Fortsätzen (Hypothalamus und Basalganglien, Mittelhirn) auf, in den meisten Kerngebieten beschränkt es sich aber auf Perikaryen. Verlust oder Rückgang der Fluoreszenzintensität sind zeitabhängig und schreiten von rostral nach caudal fort. Zuerst (30 min p.i.) werden die präoptischen Kerngebiete tryptophanfrei. Die Fluoreszenz des Hirnstamms im Gebiet des Mittelhirns und des IV. Ventrikels nimmt währenddessen zu und bleibt in Zellfortsätzen bis zum Ende der Versuchszeit erhalten. Im Boden des IV. Ventrikels ist die Fluoreszenz auf Zellfortsätze beschränkt, hauptsächlich in der Formatio reticularis und im Gebiet der Hirnnervenkerne. Während der gesamten Versuchszeit sind im Stratum moleculare des Kleinhirns fluoreszierende Perikaryen einer gleichartigen Zellart zu beobachten. Fluoreszenz in der weißen Substanz findet sich in Fornix und Commissura anterior, in Verbindungen zwischen Thalamus, Hypothalamus, Cortex, Stria terminalis und Septumregion; in der Zona incerta, in den Forelschen Feldern, im Crus cerebri und in der Habenularregion sowie in den Mittelhirnbahnen um den Aquaedukt, im Schützschen Bündel und besonders stark in der Formatio reticularis. Wegen der unterschiedlichen Verteilung und Intensität wird ein Transport des Tryptophans aus dem Zwischenhirn in caudale Areale um den Aquaeduct und oberen Hirnstamm diskutiert.
    Notes: Summary After the injection of DANS-tryptophan into the 3rd ventricle of white rats, the temporal absorption and distribution of the fluorescence marked amino acid in the central nervous system was examined with fluorescence microscopic techniques. The results are as follows: 1. Ependyma. Increased fluorescence of the resorbed DANS-tryptophan was observed in the ependyma of both lateral ventricles, the 3rd ventricle and the aquaeduct up to 15 min after the injection. Afterwards, no further fluorescence could be demonstrated. All ependymal cells are resorbing the amino acid in uniform manner. There is a distinct limitation of fluorescent ependymal wall against subependymal brain tissue. The ependyma of the 4th ventricle is not fluorescent. 2. Choroid plexus. 3 min p.i. fluorescence arises in the choroid plexus of lateral ventricles and 3rd ventricle, remaining there longer than in the ependyma, firstly being removed 120 min p.i. There is no fluorescence in the choroid plexus of the 4th ventricle. 3. Brain tissue. Being resorbed by the ependyma cells, DANS-tryptophan is distributed with varying temporal differences in the surrounding brain regions. Distribution preference is as follows: Hypothalamus and basal ganglia (3 min p.i.); septal-, periventricular-, and preoptic nuclei, and gray matter surrounding the aquaeduct (5 min p.i.). Hippocampus, dentate gyrus and thalamus are showing distinct fluorescence not before 10 and 20 min p.i. The tryptophan is found sporadically in the pericarya and fibres (hypothalamus, basal ganglia and mid-brain), in most nuclear areas however, it was restricted to the pericarya. Loss or decrease of fluorescence intensity is time dependent and proceeds in caudal direction. The preoptic nuclear region firstly can be found as to be free of tryptophan (30 min p.i.). During this time, an increase in fluorescence of the brain-stem in the mid-brain and 4th ventricular region is observed and is maintained in nerve fibres until the end of the experiment. At the base of the 4th ventricle fluorescence is restricted to the nerve fibres principally in the reticular formation and nuclear region of the brain nerves. Fluorescent pericarya of a particular cell type are observed during the entire experiment in the cerebellar molecular layer. The preferential fluorescence distribution in the white matter is as follows: Fornix and anterior commissure, connections between thalamus, hypothalamus, cortex, stria terminalis and septal region; zona incerta, Forel fields, crus cerebri and habenular region. Similar the mid-brain tracts around the aquaeduct, Schütz bundle and specially the reticular formation. With regards to various distribution patterns and fluorescence intensity the transport of tryptophan from diencephalon to caudal areas around the aquaeduct and upper brain stem is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Tetracycline ; Intraventricular injection ; Rat brain ; Fluorescence microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung Tetracyclin wird nach intraventrikulärer Injektion innerhalb von 5 min über das gesamte Ventrikelsystem verteilt und von allen Ependymzellen und den Plexus chorioidei resorbiert. Im unteren Teil des III. Ventrikels ist die Fluoreszenz der einzelnen Ependymzellen unterschiedlich stark. Während in den Seitenventrikeln das Tetracyclin aus dem Ependym in das subependymale Gewebe nicht eindringt, kommt es in den übrigen Ventrikeln zu einer zeitlich unterschiedlichen Tetracyclinausbreitung in das umgebende Hirngewebe, hauptsächlich in periventrikuläre Kerngebiete. Die Tetracyclinfluoreszenz in Ependym und Plexus chorioidei erreicht 20 bis 30 min nach der Injektion ihren Höhepunkt, nimmt dann langsam ab und ist nach 120 min erloschen. Die Wände der Gehirnkapillaren zeigen 20 min nach der Injektion Tetracyclinfluoreszenz, die bis 60 min andauert, danach aber langsam abnimmt. Der Vergleich zwischen dem Verhalten von Tetracyclin und DANS-Tryptophan (Stark und Franz, 1972) ergibt hauptsächlich folgende Unterschiede: 1. DANS-Tryptophan verbleibt nur bis 15 min nach der Injektion in den Ependymzellen der Seitenventrikel, des III. Ventrikels und des Aquaeductus cerebri. Tetracyclin dagegen kann noch nach über 60 min im Ependym aller Ventrikel nachgewiesen werden. Das Ependym des IV. Ventrikels nimmt Tetracyclin, aber kein DANS-Tryptophan auf. 2. Das Plexusepithel der Seitenventrikel und des III. Ventrikels verhält sich gegenüber beiden Stoffen gleich, der Plexus chorioideus des IV. Ventrikels bleibt aber frei von DANS-Tryptophan. 3. Während Tetracyclin vorwiegend in das die Ventrikel umgebende Hirngewebe gelangt, ausgenommen die Seitenventrikel, findet sich DANS-Tryptophan auch außerhalb des periventrikulären Gewebes in Kerngebieten, in Bahnen und in Perikaryen des Stratum moleculare des Kleinhirns.
    Notes: Summary Distribution of tetracycline in the whole ventricular system and its resorption by the ependyma and choroid plexus was observed within 5 min after intraventricular injection. The 3rd ventricular base ependyma demonstrated varying degrees of fluorescence. Although tetracycline did not penetrate the subependymal tissue of the lateral ventricles, a temporary different distribution in the brain tissue surrounding the other ventricles was observed, primarily in the periventricular nuclear areas. The tetracycline fluorescence of the ependyma and choroid plexus attained a maximum 20 to 30 min after injection, and decreased gradually. After 120 min, no further fluorescence was seen. The brain capillary walls exhibited tetracycline fluorescence 20 min after injection, reaching a maximum after 60 min, gradually diminishing thereafter. A comparison between the effects of tetracycline and DANS-marked tryptophan (Stark and Franz, 1972) demonstrates the following differences: 1. DANS-marked tryptophan remains in the ependyma of the lateral ventricles, the 3rd ventricle, and of the cerebral aquaeduct only up to 15 min after injection. By comparison, tetracycline can be demonstrated in the ependyma of all ventricles for more than 60 min. The 4th ventricular ependyma absorbs tetracycline, but not DANS-marked tryptophan. 2. The plexus epithelium of the lateral and 3rd ventricles displayed similar characteristics for both substances, that of the 4th ventricle, however, remains free of DANS-marked tryptophan. 3. While tetracycline primarily is absorbed in the brain tissue surrounding the ventricles (except that of lateral ventricles); DANS-marked tryptophan is also found outside the periventricular tissue in cells, brain tracts and perikarya in the cerebellar molecular layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1561
    Keywords: Oriental fruit fly ; Bactrocera dorsalis ; female attractant ; panax ; fruit fly control ; semiochemicals ; kairomones ; Tephritidae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Fresh whole leaves and solvent–water leaf extracts of the hedgerow plant panax, Polyscias guilfoylei (Bull), were tested for their attractiveness to male and female Oriental fruit flies, Bactrocera dorsalis, in laboratory flight tunnel and cage olfactometer bioassays. Fresh mature whole panax leaves were found to be attractive to mated female oriental fruit flies in the flight tunnel. Response of males and virgin females was low and in most instances not significantly different from controls. Attraction of mated female flies to the layers resulting from a methylene chloride–water partition or a hexane–water partition of freshly ground leaves using small McPhail traps was greatest in the methylene chloride fraction. When methylene chloride and water layers were tested competitively in a multiple-choice rotating olfactometer, the methylene chloride fraction was more attractive. Tests involving the methylene chloride–water interface (an emulsion of the two partitioned layers) with and without a standard attractant NuLure, showed the emulsion layer to be significantly more attractive than the other fractions or NuLure. In outdoor cage olfactometer assays of methylene chloride and water fractions, activity was greatest in the methylene chloride fraction. The results suggests that volatile semiochemicals from this nonhost plant are attractive to mated female Oriental fruit flies. The results are discussed in relation to the chemical ecology of B. dorsalis and the potential use of this nonhost plant for detection and control of female Oriental fruit flies in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 233 (1983), S. 305-317 
    ISSN: 1432-0878
    Keywords: Freeze fracture ; HVEM ; Retina ; Optic neuropile ; Drosophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The developmental mutant of Drosophila (ora JK84) is characterized by nonfunctional photoreceptor cells (R1–6), while the R7/R8 cells are normal. A fundamental question is: Does the near absence of photosensitive membranes inhibit development of the Rl-6 axons and their synapses at the other end of the cell? The retina and first optic neuropile (lamina ganglionaris) were examined with freeze-fracture technique and high voltage electron microscopy. R1–6 have reduced rhabdomere caps; rhabdomeric microvilli have about 50% of the normal diameter and 20% of the normal length. Affected cells exhibit prominent vacuoles which appear to communicate with some highly convoluted microvillar membranes. Almost no P-face particles (putative rhodopsin molecules) are present in the R1–6 rhabdomeres, and particle densities are lower in R7 than previously reported. Near the rhabdomere caps, microvilli of R1–6 are fairly normal, but at more proximal levels they are greatly diminished in length and changed in orientation, while at still more proximal levels they are lost. R1–6, R7, and R8 axons from each ommatidium are bundled into normal pseudocartridges beneath the basement membrane. No abnormalities are found in the lamina ganglionaris, and all synaptic associations as well as the presumed “virgin” synapses (of R1–6) appear normal. No glial anomalies are present, and R7/R8 axons project through the lamina in the usual fashion. These fine structural findings are correlated with known electrophysiological, biochemical, and behavioral correlates of both sets of photoreceptors (R1–6, and R7/R8).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Transmission and high voltage electron microscopy ; Drosophila ; Degeneration ; Retinular cells ; Optic neuropiles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The compound eye and the two most distal optic neuropils (lamina ganglionaris and medulla externa) of the Drosophila mutant w rdgB KS222were examined with transmission electron microscopes at conventional (60 kV) and high (0.8–1 MV) voltages. Eye tissue was sampled in the newly emerged and at 3, 7, and 21 days following eclosion. This mutant is known to show a light-induced degeneration of the peripheral retinular cells (R 1–6); the spectral sensitivity is altered and the threshold is increased reflecting the function of the central cells (R7, 8) which do not degenerate. A totally normal appearing visual system (peripheral retina and optic neuropiles) was found in newly emerged adults. After 3 days the somata of some of the peripheral retinal cells are affected and all of their axons show degeneration. At one week the R 1–6 pathology is well advanced in both somal and axonal regions. In affected cells the cytoplasm is more or less uniformly electron dense and contains liposomes, lysosome-like bodies, myeloid figures and vacuoles suggesting autophagy. Such cytoplasm (noted at 3 and 7 days post-eclosion) exhibits an electron dense reticulum and degenerate mitochondria. Microvilli become more electron dense. Retinular axon terminals are electron opaque and lack synaptic vesicles with few if any presynaptic structures. Mitochondrial remains are barely recognizable. Transsynaptic degeneration was not found. After 3 weeks, the structure of R 1–6 in the peripheral retina (somata and rhabdomeres) is greatly reduced or lost while R7 and R8 and higher order neurons are not affected. The debris from cell bodies and axon terminals of R 1–6 seems diminished, so that some phagocytosis probably takes place along with gliosis in the lamina.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...