ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Strength of rocks  (1)
  • experimental rock mechanics  (1)
  • Deformation
  • Springer  (2)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 124 (1986), S. 3-30 
    ISSN: 1420-9136
    Keywords: Structural Geology ; faults ; S. E. Spain ; experimental rock mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Fault rocks formed in phyllosilicate-bearing rocks formed over a wide range of environmental conditions within the Earth's crust are characterised by similar structural and microstructural features. The most striking of these are (a) P foliation, defined by the preferred alignment of phyllosilicates in a plane oblique to the direction of shear and (b) small-scale shear zones either parallel to the shear direction (Y shears) or oblique to the direction of shear but with the opposite sense of obliquity relative to the P foliation (Riedel shears, R1). The minor shear zones have the same sense of displacement as the host shear zone. The occurrence of these and other structures in clay-rich fault gouges from exceptionally well-exposed fault zones in southeastern Spain is described. The pervasive development of these flow structures throughout large volumes of fault gouge permits fault-displacement vectors to be inferred. For the region studied the movement pictures is relatively simple and is superposed on a complex network of variably oriented fault zones. The naturally produced fault-gouge structures are compared with fault gouges produced experimentally by shearing kaolinite-quartz mixtures between intact blocks over a wide range of experimental conditions. Good correspondence between their respective microstructural features was observed. Finally, attention is drawn to the fact that natural clay-bearing fault gouges are the products of deformation accompanied by very low-grade retrogressive metamorphism, and that part of the micro-structure of these rocks may be ascribed to crystallization under stress. Microstructures are described that are from long-duration experimental runs, (5 months at high temperature and in the presence of water) which go some way towards simulating these effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 116 (1978), S. 634-654 
    ISSN: 1420-9136
    Keywords: Strength of rocks ; Crack growth with water ; Rock mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A series of stress relaxation experiments have been carried out on faulted and intact Tennessee sandstone to explore the influence of pore water on strength at different strain rates. Temperatures employed were 20, 300 and 400°C, effective confining pressure was 1.5 kb and strain rates as low as 10−10 sec−1 were achieved. Most samples were prefaulted at 2.5 kb confining pressure and room temperature. This is thought to have secured a reproducible initial microstructure. The strength of the dry rock was almost totally insensitive to strain rate in the range 10−4 to 10−10 sec−1. In contrast, the strength of the wet rock decreased rapidly with strain rate at rates less than 10−6 sec−1. Brittle fracture of the quartz grains which constitute this rock is the most characteristic mode of failure under the test conditions used. The experimental data are discussed in terms of the possible deformation rate controlling processes, and it is suggested that in the wet experiments at intermediate to high strain rates (10−7 to 10−4 sec−1) the observed deformation rate is controlled by the kinetics of water assisted stress corrosion, whilst deformation at low strain rates (ca. 10−9 sec−1) is controlled by a pressure solution process. The results have implications for the rheology of fault rocks at depths of perhaps 10 to 15 km in sialic crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...