ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copolyesters  (1)
  • adipic acid  (1)
  • Polymer and Materials Science
  • Springer  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 4 (1996), S. 9-20 
    ISSN: 1572-8900
    Keywords: Copolyesters ; biodegradability ; aliphatic diol ; adipic acid ; terephthalic acid ; aromatic oligomers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Model oligo esters of terephthalic acid with 1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol have been investigated with regard to their biodegradability in different biological environments. Well-characterized oligomers with weight-average molar masses of from 600 to 2600 g/mol exhibit biodegradation in aqueous systems, soil, and compost at 60°C. SEC investigations showed a fast biological degradation of the oligomer fraction consisting of 1 or 2 repeating units, independent of the diol component used for polycondensation, while polyester oligomers with degrees of polymerization higher than 2 were stable against microbial attack at room temperature in a time frame of 2 months. At 60°C in a compost environment chemical hydrolysis also degrades chains longer than two repeating units, resulting in enhanced degradability of the oligomers. Metabolization of the monomers and the dimers as well by the microorganisms could be confirmed by comparing SEC measurements and carbon balances in a “Sturm test” experiment. Based on these results degradation characteristics of potential oligomer intermediates resulting from a primary chain scission from copolyesters consisting of aromatic and aliphatic dicarbonic acids can be predicted depending on their composition. These results will have an evident influence on the evaluation of the biodegradability of commercially interesting copolyesters and lead to new ways of tailor-made designing of new biodegradable materials as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...