ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Podospora anserina  (6)
  • Cell & Developmental Biology
  • ddc:330
  • Springer  (6)
  • 1
    ISSN: 1573-4927
    Keywords: Podospora anserina ; ribosomal mutants ; paromomycin resistance ; paromomycin hypersensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract This paper describes the analysis of cold-resistant revertants of a cold-sensitive mutant. Pm1-1 is a ribosomal mutation screened for its paromomycin resistance. Suppression of its cold sensitivity occurs with two kinds of external mutations localized in two different loci. One of them, PmB, is assumed to be a ribosomal gene. PmB mutations confer hypersensitivity to paromomycin in vivo as well as in vitro in a cell-free protein synthesis system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4927
    Keywords: genetic analysis ; paromomycin resistance ; Podospora anserina ; cytoplasmic ribosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract It has recently been shown that paromomycin, an antibiotic of the aminoglycoside family, is also active on eukaryotic cytoplasmic ribosomes. In the fungus Podospora anserina, genetic analysis of ten mutants resistant to high doses of paromomycin shows that this resistance is caused by mutations in two different nuclear genes. These mutants display pleiotropic phenotypes (cold sensitivity, mycelium and spore appearance and coloration, cross-resistance to other antibiotics). Double mutants are either lethal or very altered and unstable. Moreover, the cytochrome spectra of these mutants seem to indicate that cytoplasmic protein synthesis is affected. The mutants also display a slight suppressor effect. We can therefore assume that these mutations affect cytoplasmic ribosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Sterility ; Podospora anserina ; Senescence ; Ectopic mating type ; Sexual differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mating-type locus of Podospora anserina controls fusion of sexual cells as well as subsequent stages of development of the fruiting bodies. The two alleles at the locus are defined by specific DNA regions comprising 3.8 kb for mat+ and 4.7 kb for mat−, which have identical flanking sequences. Here we present the characterization of several mutants that have lost mat+-specific sequences. One mutant was obtained fortuitously and the other two were constructed by gene replacement. The mutants are deficient in mating with strains of either mat genotype but are still able to differentiate sexual reproductive structures. The loss of the mating type does not lead to any discernible phenotype during vegetative growth: in particular it does not change the life span of the strain. The mutants can recover mating ability if they are transformed with DNA containing the complete mat+ or mat− information. The transformants behave in crosses as do the reference mat+ or mat− strains, thus indicating that the transgenic mat+ and mat− are fully functional even when they have integrated at ectopic sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 256 (1997), S. 169-178 
    ISSN: 1617-4623
    Keywords: Key words Ascomycete ; Development ; Mating type ; Nuclear identity ; Podospora anserina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the heterothallic ascomycete Podospora anserina, the mating-type locus is occupied by two mutually exclusive sequences termed mat+ and mat–. The mat+ sequence contains only one gene, FPR1, while the mat– sequence contains three genes: FMR1, SMR1 and SMR2. Previous studies have demonstrated that FPR1 and FMR1 are required for fertilization. Further analyses have led to the hypothesis that mat+ and mat– genes establish a mat+ and mat– nuclear identity, allowing recognition between nuclei of opposite mating type within the syncytial cells formed after fertilization. This hypothesis was based on the phenotypes of strains bearing mutations in ectopic mat genes. Here we present an analysis of mutations in resident mat– genes which suggests that, unlike FMR1 and SMR2, SMR1 is not involved in establishing nuclear identity. In fact, mutations in these two genes impair nuclear recognition, leading to uniparental progeny, while mutations in SMR1 block the sexual process, probably at a step after nuclear recognition. The nuclear identity hypothesis has also been tested through internuclear complementation tests. In these experiments, the mat– mutants were crossed with a mat+ strain carrying the wild-type mat– genes. Our rationale was that internuclear complementation should not be possible for nuclear identity genes: the relevant genes should show nucleus-restricted expression, and diffusion of their products to other nuclei should not occur. This test confirmed that SMR1 is not a bona fide mat gene since it can fulfill its function whatever its location, in either a mat− or a mat+ nucleus, and even when present in both nuclei. SMR2, but not FMR1, behaves like a nuclear identity gene with respect to internuclear complementation tests. A model is proposed that tentatively explains the ambiguous behaviour of the FMR1 gene and clarifies the respective functions of the three mat– proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 210 (1987), S. 129-134 
    ISSN: 1617-4623
    Keywords: Transformation ; Cosmids ; Instability ; Homologous integration ; Podospora anserina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Podospora anserina a chromosome walk near the mating type locus was made possible through isolation of genomic sequences linked to a plasmid integrated in this part of the genome. Genetic analysis of 86 transformants obtained from the 5 first cosmids of this walk was performed. These data and those reported elsewhere for cosmids resulting from another chromosome walk allow us to draw two clear-cut rules for transformation with cosmids. First, the large majority of transformants arise from integration at the resident locus, contrasting with the heterologous process which predominates for plasmids. Second, all homologous integrations are highly unstable while all non-homologous integrations are stable. Analysis of the timing of the instability reveals that loss of the selective marker is probably limited to the fruiting body.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 219 (1989), S. 270-276 
    ISSN: 1617-4623
    Keywords: Transformation ; Homologous integration ; Instability ; DNA sequence replacement ; Podospora anserina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have developed in Podospora anserina a two-step procedure for DNA sequence replacement through transformation which might be applicable to other filamentous fungi. Targeting of transforming DNAs to their homologous locus is achieved provided a cosmid vector is used. Southern blot analysis of genomic DNAs from a set of transformants is presented. The data confirm that cosmids integrate into the chromosome through mostly homologous recombination which leads to a duplicated sequence separated by the vector. This event was found to be unstable in crosses. We show that this instability is due to the frequent excision of the vector together with the selective marker and one copy of the duplication, either the resident or foreign sequence. The two sequences can be distinguished because they exhibit restriction fragment length polymorphism. Therefore, Podospora anserina treats duplications occurring through transformation in a way differing from that exhibited by Neurospora crassa and Ascobolus immersus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...