ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 199 (1991), S. 349-363 
    ISSN: 1432-041X
    Keywords: Centipedes ; Myriapod embryogenesis ; Neurogenesis ; Segmentation ; Axon growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have examined the embryo of the centipedeEthmostigmus rubripes to determine the degree of evolutionary conservatism in the developmental processes of segmentation, neurogenesis and axon formation between the insects and the myriapods. A conspicuous feature of centipede embryogenesis is the early separation of the left and right sides of the ganglionic primordia by extra-embryonic ectoderm. An antibody to the protein encoded by theDrosophila segmentation geneengrailed binds to cells in the posterior margin of the limb buds in the centipede embryo, in common with insect and crustacean embryos. However, whereas in insects and crustaceans this protein is also expressed in a subset of cells in the neuroectoderm, the anti-engrailed antibody did not bind to cells in the ganglionic primordia of the centipede embryo. Use of the BrdU labelling technique to mark mitotically active cells revealed that neuroblasts, the ubiquitous neuron stem cell type in insects, are not present in the centipede. The earliest central axon pathways in the centipede embryo do not arise from segmentally repeated neurons, as is the case in insects, but rather by the posteriorly directed growth of axons originating from neurons located in the brain. Axonogenesis by segmental neurons begins later in development; the pattern of neurons involved is not obviously homologous to the conservative set of central pioneering neurons found in insects. Our observations point to considerable differences between the insects and the myriapods in mechanisms for neurogenesis and the formation of central axon pathways, suggesting that these developmental processes have not been strongly conserved during arthropod evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...