ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5168
    Keywords: Atlantic salmon ; turbot ; cell culture ; salinity ; fatty acids ; glycerophospholipids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells from a relatively stenohaline marine species, turbot (Scophthalmus maximus) (TF) and an anadromous species, Atlantic salmon (AS) were cultured in media supplemented with NaCl to produce OPs varying from 300 to 500 mOsm kg−1 and the direct effects of OP (salinity) on the fatty acid compositions of the main glycerophospholipid classes were determined. The most dramatic effects of salinity on total lipid fatty acids were observed in polyunsaturated fatty acids (PUFA) in TF cells. There was a graded decrease in the percentage of 18:2n-9, and consequently total n-9 PUFA, and concomitantly increased percentages of both total n-3 and n-6 PUFA with increasing salinity. The increased n-3 and n-6 PUFA was due to significantly increased percentages of the major fatty acids in each of these groups, namely 22:6n-3 and 20:4n-6, respectively. The reciprocal changes in n-9 PUFA and n-3/n-6 PUFA in TF cell total lipid resulted in the percentage of total PUFA not being significantly affected by changes in salinity. The graded decrease in 18:2n-9 with increasing salinity in TF cells was observed in all the major glycerophospholipids but especially PE, PI and PS. Increasing salinity resulted in graded increases in the percentages of 22:6n-3 in PE and PS in TF cells. The quantitatively greatest increase in the percentage of n-6 PUFA in TF cells occurred with 20:4n-6 in PC, PE and PL. There were less significant changes in the fatty acid compositions of glycerophospholipids in AS cells. However, the proportion of total n-3 + n-6 PUFA in PE varied reciprocally with the proportion of dimethylacetals in response to salinity. Similar reciprocal changes between fatty acids in response to salinity were also evident in the quantitatively more minor glycerophospholipids PS and Pl. In PS, the percentage of 22:6n-3 was significantly lower at 400 mOsm kg−1 whereas the proportion of total monoenes was significantly higher at that salinity. A similar inverse relationship between total monoenes and 20:4n-6 (and, to a lesser extent total saturates) in response to salinity was noted in PI. The results show that environmental salinity, without whole-body physiological stimuli, has direct effects on the fatty acid composition of major glycerophospholipid classes in fish cells and that these effects differ in cells from different fish species
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5168
    Keywords: Atlantic salmon ; turbot ; cell culture ; salinity ; growth ; lipids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The direct effects of osmotic pressure (salinity) on growth performance and lipid composition were investigated in fish cells in culture. Cell lines from a relatively stenohaline marine species, turbot (Scophthalmus maximus) (TF) and an anadromous species, Atlantic salmon (AS) were cultured in media supplemented with NaCl to produce osmotic pressures varying from 300 to 500 mOsm kg−1. The growth rates of the two cell lines were affected in a similar manner by the salinity of the media with the rank order for both peak cell numbers and growth rates up to the day of peak cell number being 300 〉 350 〉 400 〉 450 〉 500 mOsm kg−1. Cell death occurred in both cell lines in older cultures at all salinities with the greatest loss of viable cells in media of 300 and 350 kg−1. However, there were quantitative and qualitative differences between the cell lines in their lipid metabolism in response to the salinity of the media. The lipid content expressed per cell showed a positive correlation between lipid per cell and salinity in TF cells, but this was less apparent in AS cells. The percentage of total polar lipid classes increased with increasing salinity in TF cells due mainly to graded increases in the percentages of choline phospholipids. In contrast, there were no significant differences in the proportions of polar and neutral lipid classes with salinity in AS cells. The only significant effect of salinity in AS cells was a decreased proportion of dimethylacetals in total lipid at the highest salinity. The same significant effect of salinity on dimethylacetal content of total lipid was observed in TF cells. However, in addition there was a graded decrease in the percentage of 18:2n-9 in TF cell total lipid with increasing salinity. This was accompanied by increased percentages of total n-3 and n-6 PUFA with higher proportions of both groups of PUFA at 450 and 500 compared with 300 mOsm kg−1. The results show that environmental salinity, in the absence of hormonal or other physiological stimuli, has direct effects on the growth and lipid metabolism of fish cells and that these effects differ in cells from different fish species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...