ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Allometry  (2)
  • Cell cycle  (2)
  • Springer  (4)
  • 1
    ISSN: 1432-2048
    Keywords: Cell cycle ; Chlamydomonas ; Cell wall ; Autolysin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In light-dark-synchronized cultures of the unicellular green algaChlamydomonas reinhardtii, release of zoospores from the wall of the mother cell normally takes place during the second half of the dark period. The recently isolated mutant ‘ls’, however, needs light for the liberation of zoospores when grown photoautotrophically under a 12 h light-12 h dark regime. The light-induced release of zoospores was found to be prevented by addition of the photosystem-II inhibitor 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. Furthermore, light dependence of this process was shown to be abolished when the mutant ‘ls’ was grown either photoautotrophically under a 14 h light-10 h dark regime or in the presence of acetate. Our findings indicate that the light-dependency of zoospore liberation observed in cultures of this particular mutant during photoautotrophic growth under a 12 h light-12 h dark regime might be attributed to an altered energy metabolism. The light-induced release of zoospores was found to be prevented by addition of cycloheximide or chloramphenicol, antibiotics which inhibit protein biosynthesis by cytoplasmic and organellar ribosomes, respectively. Actinomycin D, an inhibitor of RNA synthesis, however, did not affect the light-induced liberation of zoospores. Sporangia accumulate in stationary cultures of the mutant ‘ls’. Release of zoospores was observed when these sporangia were collected by centrifugation and incubated in the light after resuspension in fresh culture medium. Since liberation of zoospores was not observed after dilution of the stationary cultures with fresh culture medium, we suppose that components which interfere with the action of the sporangial autolysin are accumulated in the culture medium of the mutant ‘ls’.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 172 (1987), S. 463-472 
    ISSN: 1432-2048
    Keywords: Cell cycle ; Chlamydomonas (cell cycle) ; Light/dark response (cell cycle)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cultures of the unicellular green alga Chlamydomonas reinhardii can be synchronized by light/dark cycling not only under photoautotrophic but also under mixotrophic growth conditions. We observed that cultures synchronized in the presence of acetate continue to divide synchronously for one cell-cycle period when transferred to heterotrophic growth conditions. This finding enabled us to investigate the differential effects of light on cell growth and cell division. When cells were exposed to continuous light at the beginning of the growth period they entered the division phase earlier than dark-grown cells as a consequence of an increased growth rate. Illumination at the end of the growth period, however, caused a considerable delay in cell division and an extended growth period. The light-induced delay in cell division was also observed in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. This finding demonstrates that cell division is directly influenced by a light/dard-responsive cell-cycle switch rather than by light/dark-dependent changes in energy metabolism. The importance of this light/dark control to the regulation of the Chlamydomonas cell cycle was investigated in comparison with other control mechanisms (size control, time control). We found that the light/dard-responsive cell-cycle switch regulates the transition from G1-to S-phase. This control mechanism is effective in cells which have attained the commitment to at least one round of DNA replication and division but have not attained the maximal cell mass which initiates cell division in the light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 170 (2000), S. 403-410 
    ISSN: 1432-136X
    Keywords: Key words Flight ; Allometry ; Glossophaga ; Bats ; Pregnancy ; AbbreviationsAR aspect ratio ; B wing span ; bm body mass ; BMR basal metabolic rate ; DEE daily energy expenditure ; DEI daily energy intake ; eΔbm caloric equivalent of body mass changes ; g gravitational force ; Pr power input during resting ; Pf power input during horizontal flight ; Ph power input during hovering flight ; ΔR mobilized or stored reserves ; S wing area ; tf daily flight duration ; tr daily resting duration ; WL wing loading
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Aerodynamic theory predicts that power output during flight should vary with body mass by an exponent of 1.56 when wing morphology remains constant (within an individual), and by an exponent of 1.19 when wing morphology changes with body mass (within a species or between species). I tested these predictions by estimating the power input during horizontal flight in three pregnant and two subadult Glossophaga soricina using a multivariate regression model. This analysis yielded power input during resting and flight as well as the energetic equivalent of change in body mass. A comparison of the estimated flight power for pregnant G. soricina, with published data on flight power of non-pregnant adults, revealed that energy turnover in flight is highest for pregnant G. soricina. Flight power of a 13-g pregnant G. soricina was even higher than that of a 16-g non-pregnant Glossophaga longirostris. A least-squares regression analysis yielded the following equations for the intraspecific scaling of flight power with body mass: power input during horizontal flight (P f )=24099 body mass (bm; kg)2.15 (r 2=0.97) for the intra-individual allometry (pregnancy) and P f =113 bm(kg)0.95 (r 2=0.99) for the inter-individual allometry (ontogeny). Both mass exponents are not significantly different from the predicted values for the scaling relationship of flight power within an individual (1.56) and within a species (1.19). This is the first measurement of power input during flight for subadult and pregnant bats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 169 (1999), S. 38-48 
    ISSN: 1432-136X
    Keywords: Key words Hovering flight ; Glossophagine bats ; Hummingbirds ; Sphingid moths ; Allometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Three groups of specialist nectar-feeders covering a continuous size range from insects, birds and bats have evolved the ability for hovering flight. Among birds and bats these groups generally comprise small species, suggesting a relationship between hovering ability and size. In this study we established the scaling relationship of hovering power with body mass for nectar-feeding glossophagine bats (Phyllostomidae). Employing both standard and fast-response respirometry, we determined rates of gas exchange in Hylonycteris underwoodi (7 g) and Choeronycteris mexicana (13–18 g) during hover-feeding flights at an artificial flower that served as a respirometric mask to estimate metabolic power input. The O2 uptake rate (V˙ o2) in ml g−1 h−1 (and derived power input) was 27.3 (1.12 W or 160 W kg−1) in 7-g Hylonycteris and 27.3 (2.63 W or 160 W kg−1) in 16.5-g Choeronycteris and thus consistent with measurements in 11.9-g Glossophagasoricina (158 W kg−1, Winter 1998). V˙ o2 at the onset of hovering was also used to estimate power during forward flight, because after a transition from level forward to hovering flight gas exchange rates initially still reflect forward flight rates. V˙ o2 during short hovering events (〈1.5 s) was 19.0 ml g−1 h−1 (1.8 W) in 16-g Choeronycteris, which was not significantly different from a previous, indirect estimate of the cost of level forward flight (2.1 W, Winter and von Helversen 1998). Our estimates suggest that power input during hovering flight P h (W) increased with body mass M (kg) within 13–18-g Choeronycteris (n = 4) as P h  = 3544 (±2057 SE) M 1.76 (±0.21 SE) and between different glossophagine bat species (n = 3) as P h  = 128 (±2.4 SE) M 0.95 (±0.034 SE). The slopes of three scaling functions for flight power (hovering, level forward flight at intermediate speed and submaximal flight power) indicate that: 1. The relationship between flight power to flight speed may change with body mass in the 6–30-g bats from a J- towards a U-shaped curve. 2. A metabolic constraint (hovering flight power equal maximal flight power) may influence the upper size limit of 30–35 g for this group of flower specialists. Mass-specific power input (W kg−1) during hovering flight appeared constant with regard to body size (for the mass ranges considered), but differed significantly (P 〈 0.001) between groups. Group means were 393 W kg−1 (sphingid moths), 261 W kg−1 (hummingbirds) and 159 W kg−1 (glossophagine bats). Thus, glossophagine bats expend the least metabolic power per unit of body mass supported during hovering flight. At a metabolic power input of 1.1 W a glossophagine bat can generate the lift forces necessary for balancing 7 g against gravitation, whereas a hummingbird can support 4 g and a sphingid moth only 3 g of body mass with the same amount of metabolic energy. These differences in power input were not fully explained by differences in induced power output estimated from Rankine-Froude momentum-jet theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...