ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4897
    Keywords: Flexural fatigue ; Glass reinforced composites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Conclusions Flexural fatigue of uniaxially and biaxially stressed IPN/glass mat composites was investigated using four point bend (4PB) and concentrically loaded (CL) specimen geometries. Regions of nearly constant bending moment between the inner spans of a 4PB beam and within the inner annulus of a CL circular plate yield quasi-uniform uniaxial and biaxial stress, respectively, on the tensile faces. The specimen dimensions were optimized for both loading geometries to give: (1) reduced specimen deflection through maximizing the ratio of the induced tensile stresses to the applied load, (2) minimized contact stresses by maximizing the induced stress with respect to the unit contact load, and (3) a large material volume exposed to the maximum cyclic stress (i.e., statistical fracture initiation). A power model was used to analyze the fatigue data for the 4PB and CL specimens. Both IPN composite materials studied fatigued more rapidly under the more severe loading conditions imposed by the CL specimen geometry. Fractography revealed that debond fracture was the dominant damage process for both geometries. The initial debond cracks were uniformly distributed throughout the stressed regions, confirming the presence of nearly uniform tensile stress. Damage localization followed after further cycling and was characterized by a locally high debond fracture density, fiber fracture, and always occurred where several glass strands crossed near the specimen surface. Final specimen failure resulted from the preferential growth of dominant cracks through the specimen thickness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 703-714 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Stress relaxation and moduli of elasticity of the composite system crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA)-glass beads were studied dry and swollen in water to equilibrium state over the temperature range 5-170°C. The moduli of the composites in the dry state increased with increasing filler concentration, while those of the composites measured in the swollen state up to the volume concentration of the filler vf′ ≅ 0.15 decreased. In this respect the composites behaved as porous systems, i.e., as polymers with macroscopic defects. This effect was explained as a consequence of weak filler-matrix interaction. The results were compared with the existing theories of moduli of the composite materials.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 12 (1974), S. 2579-2581 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 3327-3329 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...