ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-882X
    Keywords: benzene/cyclohexane mixture ; benzene‐permselectivity ; degree of tosylation ; mechanism of separation ; tosylcellulose membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Tosylcelluloses (TosCells) with different degrees of tosylation were synthesized as membrane materials for the separation of benzene/cyclohexane (Bz/Chx) mixtures. TosCell membranes showed a high benzene‐permselectivity for the Bz/Chx mixtures in pervaporation (PV). An increase in the benzene concentration in the feed mixtures increased permeation rate but decreased the benzene‐permselectivity of the TosCell membranes. The increase in the permeation rate was attributed to the increase of the degree of swelling of the TosCell membranes by the feed mixtures and the decrease in the benzene‐permselectivity was mainly caused by the decrease of sorption selectivity. With low benzene concentrations in the Bz/Chx mixtures, the permeation rate of a TosCell membrane with a higher degree of tosylation was greater than that with a lower degree of tosylation, but was vice versa with a high benzene concentration. The benzene‐permselectivity of the former TosCell membrane was higher than that of the latter membrane. Differences of the permeation rate and benzene‐permselectivity with changes in the benzene concentration in the feed mixture and degree of tosylation of the TosCell membrane were significantly influenced by the degree of swelling of the TosCell membrane and the benzene concentration sorbed into the TosCell membrane. Mechanism of separation for the Bz/Chx mixtures through the TosCell membranes is discussed by the solution–diffusion model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...