ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Soil Science Society of America (SSSA)  (2)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (2)
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (2)
Years
Topic
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (2)
  • Energy, Environment Protection, Nuclear Power Engineering
  • Geosciences  (2)
  • 1
    Publication Date: 2015-01-28
    Description: Processes within the critical zone—spanning groundwater to the top of the vegetation canopy—have important societal relevance and operate over broad spatial and temporal scales that often are not included in existing frameworks for ecosystem services evaluation. Here we expand the scope of ecosystem services by specifying how critical zone processes extend context both spatially and temporally, determine constraints that limit provision of services, and offer a potentially powerful currency for evaluation. Context : A critical zone perspective extends the context of ecosystem services by expressly addressing how the physical structure of the terrestrial Earth surface (e.g., parent material, topography, and orography) provides a broader spatial and temporal template determining the coevolution of physical and biological systems that result in societal benefits. Constraints : The rates at which many ecosystem services are provided are fundamentally constrained by rate-limited critical zone processes, a phenomenon that we describe as a conceptual "supply chain" that accounts for rate-limiting soil formation, hydrologic partitioning, and streamflow generation. Currency : One of the major challenges in assessing ecosystem services is the evaluation of their importance by linking ecological processes to societal benefits through market and nonmarket valuation. We propose that critical zone processes be integrated into an evaluation currency, useful for valuation, by quantifying the energy flux available to do thermodynamic work on the critical zone. In short, characterization of critical zone processes expands the scope of ecosystem services by providing context, constraints, and currency that enable more effective management needed to respond to impacts of changing climate and disturbances.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-01
    Description: The structure of the critical zone (CZ) is a result of tectonic, lithogenic, and climatic forcings that shape the landscape across geologic time scales. The CZ structure can be probed to measure contemporary rates of regolith production and hillslope evolution, and its fluids and solids can be sampled to determine how structure affects CZ function as a living filter for hydrologic and biogeochemical cycles. Substantial uncertainty remains regarding how variability in climate and lithology influence CZ structure and function across both short (e.g., hydrologic event) and long (e.g., landscape evolution) time scales. We are addressing this issue using a theoretical framework that quantifies system inputs in terms of environmental energy and mass transfer (EEMT, MJ m-2 yr-1) in the recently established Jemez River Basin (JRB)-Santa Catalina Mountains (SCM) Critical Zone Observatory (CZO). We postulate that C and water fluxes, as embodied in EEMT, drive CZ evolution and that quantifying system inputs in this way leads to predictions of nonlinear and threshold effects in CZ structure formation. We are testing this hypothesis in the JRB-SCM CZO, which comprises a pair of observatories--in northern New Mexico within the Rio Grande basin (JRB) and in southern Arizona within the Colorado River basin (SCM). The JRB-SCM CZO spans gradients in climate, lithology, and biota representative of much variation found in the larger U.S Southwest. Our approach includes in situ monitoring of zero-order basins nested within larger CZO watersheds and measurement-modeling iterations. The initial data collected at the ecosystem, pedon, and catchment scales indicates a strong role of coupled C and water flux in regulating chemical denudation of catchments in the JRB site.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...