ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-01
    Description: In porphyry ore deposit models, the propylitic alteration facies is widely interpreted to be caused by convective circulation of meteoric waters. However, recent field-based and geochemical data suggest that magmatic-derived fluids are likely to contribute to development of the propylitic assemblage. In order to test this hypothesis, we determined the oxygen and hydrogen isotope compositions of propylitic mineral separates (epidote, chlorite, and quartz), selected potassic mineral separates (quartz and magnetite), and quartz-hosted fluid inclusions from around the E48 and E26 deposits in the Northparkes porphyry Cu-Au district, New South Wales, Australia. In addition, the strontium isotope composition of epidote was determined to test for the potential contribution of seawater in the Northparkes system given the postulated island-arc setting and submarine character of some country rocks. Oxygen isotope geothermometry calculations indicate potassic alteration occurred between ~600° and 700°C in magmatic/mineralized centers, persisting to ~450°C upon lateral transition into propylitic alteration. Across the propylitic facies, temperature progressively decreased outward to
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-01
    Description: The Gara, Yalea, and Gounkoto Au deposits of the 〉17 Moz Loulo mining district, largely hosted by the Kofi series metasediments, are located several kilometers to the east of the 650-Mt Fe skarn deposits in the adjacent Falémé batholith. The Au deposits are interpreted to have formed through phase separation of an aqueous-carbonic fluid, which locally mixed with a hypersaline brine of metaevaporite origin. Recognition of an intrusive relationship between the Falémé batholith and Kofi series opens the possibility that the Fe skarns and Au deposits are part of the same mineral system. In this paper, we combine new δ13C, δ18O, and δ34S data from the Karakaene Ndi skarn, Au occurrences along the western margin of the Kofi series, and zircons within plutonic rocks of the Falémé batholith. We combine these with existing data from the Loulo Au deposits to model the contribution of magmatic volatiles to Au mineralization. C and O isotope compositions of auriferous carbonate-quartz-sulfide veins from the Loulo Au deposits have wide ranges (δ13C: –21.7 to –4.5‰ and δ18O: 11.8 to 23.2‰), whereas values from carbonate veins in Kofi series Au prospects close to the Falémé batholith and the Karakaene Ndi Fe skarn deposit have more restricted ranges (δ13C: –16.8 to –3.7‰, δ18O: 11.4 to 17.2‰, and δ13C: –3.0 ± 1‰, δ18O: 12.6 ± 1‰, respectively). Kofi series dolostones have generally higher isotopic values (δ13C: –3.1 to 1.3‰ and δ18O: 19.1 to 23.3‰). Pyrite from Kofi series Au prospects adjacent to the Falémé batholith have a wide range of δ34S values (–4.6 to 14.2‰), similar to pyrite from the Karakaene Ndi skarn (2.8 to 11.9‰), whereas δ34S values of pyrite and arsenopyrite from the Loulo deposits are consistently 〉6‰. Comparison of the C and O isotope data with water-rock reaction models indicates the Loulo Au deposits formed primarily through unmixing of an aqueous carbonic fluid derived from the devolatilization of sedimentary rocks with an organic carbon component. Isotopic data are permissive of the hypersaline brine that enhanced this phase separation including components derived from both Kofi series evaporite horizons interlayered with the dolostones and a magmatic-hydrothermal brine. This magmatic-hydrothermal component is particularly apparent in O, C, and S isotope data from the Gara deposit and Au prospects immediately adjacent to the Falémé batholith.
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Irish-type mineralization is commonly attributed to fault-controlled mixing of a seawater-derived, sulfur-rich fluid and basement-derived, metal-rich fluid. However, maar-diatreme volcanoes discovered in close spatial and temporal association with Zn-Pb mineralization at Stonepark in the Limerick basin (southwest Ireland) bring a new dimension to established geologic models and may increase the deposit-scale prospectivity in one of the world’s greatest Zn-Pb districts. Stonepark exhibits many incidences of dolomitic black matrix breccias with associated Zn-Pb mineralization, the latter typically occurring within 150 m of the diatremes. Highly negative δ34S pyrite values within country rock-dominated black matrix breccias (–12 to –34‰) are consistent with sulfide precipitation from bacteriogenic sulfur reduction in seawater-derived brines. However, δ34S values of Zn-Pb sulfides replacing black matrix breccias (–10 to 1‰) reflect multiple sulfur sources. Diatreme emplacement both greatly enhanced country rock fracture permeability and produced conduits that are filled with porous volcaniclastic material and extend down to basement rock types. Our δ34S data suggest that diatremes provide more efficient fluid pathways for basement-derived fluids. The diatremes introduce another potential sulfur source and facilitate a greater input of metal-rich basement-derived hydrothermal fluid into the system compared to other Irish-type deposits such as Navan and Lisheen, evidenced by Stonepark’s more positive modal δ34S value of –4‰. Irish-type deposits are traditionally thought to form in association with extensional basement faults and are considered unrelated to extensive Carboniferous magmatism. Our results indicate that a direct link exists between diatreme volcanism and Zn-Pb mineralization at Limerick, prompting a reevaluation of the traditional Irish-type ore formation model, in regions where mineralization is spatially associated with volcanic pipes.
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-02-01
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-05-01
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-01
    Description: The Muratdere Cu-Mo (Au) porphyry deposit in western Turkey contains elevated levels of rhenium and is hosted within granodioritic intrusions into an ophiolitic mélange sequence in the Anatolian belt. The deposit contains several stages of mineralization: early microfracture-hosted molybdenite and chalcopyrite, followed by a quartz-pyrite-chalcopyrite vein set associated with Cu-Au grade, a quartz-chalcopyrite-pyrite-molybdenite vein set associated with Cu-Mo-Re grade, and a later polymetallic quartz-barite-sphalerite-galena-pyrite vein set. The rhenium in Muratdere is hosted within two generations of molybdenite: early microfracture-hosted molybdenite and later vein-hosted molybdenite. In situ laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides shows that the later molybdenite has significantly higher concentrations of Re (average 1,124 ppm, σ = 730 ppm, n = 43) than the early microfracture-hosted molybdenite (average 566 ppm, σ = 423 ppm, n = 28). Pyrite crystals associated with the Re-rich molybdenite have higher Co and As concentrations than those in other vein sets, with Au associated with As. The microfracture-hosted sulfides have δ34S values between −2.2‰ and +4.6‰, consistent with a magmatic source. The vein-hosted sulfides associated with the high-Re molybdenite have a δ34S signature of 5.6‰ to 8.8‰, similar to values found in peridotite lenses in the Anatolian belt. The later enrichment in Re and δ34S-enriched S may be sourced from the surrounding ophiolitic country rock or may be the result of changing redox conditions during deposit formation.
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-16
    Description: Irish-type Zn-Pb deposits are important global sources of zinc, but despite a fundamental understanding of ore genesis within the Irish orefield, a detailed understanding of fluid migration and chemical evolution pathways related to sulfide and carbonate precipitation is lacking. We present the first petrographic, paragenetically constrained sulfur isotope and mineral chemistry study of mineralization at the Island Pod orebody, Lisheen deposit. The Island Pod orebody comprises high-grade mineralization that is less deformed than elsewhere in the Irish orefield. Consequently, studies of the Island Pod orebody and its mineralization provide information on the evolving nature of hydrothermal fluids involved in ore deposition. The Island Pod orebody consists almost exclusively of pyrite, sphalerite, and galena, with several stages of calcite and dolomite precipitation. Pre-ore, diagenetic pyrite is commonly overgrown by early main ore-stage pyrite, with both phases frequently replaced by main ore-stage sphalerite. In many cases, early main ore-stage pyrite is texturally zoned and exhibits chemical zoning patterns, reflecting that episodic influxes of hydrothermal fluids contained variable concentrations of As, Co, Ni, and Tl. The main ore stage was dominated by the formation of sphalerite and galena from mineralizing fluids that were depleted in these trace elements (e.g., As, Co, Tl) compared to the early main ore stage. Sulfur isotope analysis reveals four distinctive but slightly overlapping isotopic groupings, corresponding to different mineral and paragenetic stages: (1) δ34S values range from –47.7 to –30.7‰, associated with diagenetic pyrite; (2) δ34S values range from –34.3 to –14.7‰, related to early main ore-stage pyrite; (3) δ34S values range from –15.5 to + 1.7‰, corresponding to main ore-stage sphalerite; and (4) δ34S values range from –11.1 to + 17.4‰, associated with galena. Large variations in S isotope composition are common at intragrain and at other small spatial scales. The textures, paragenetic sequence, and ranges in δ34S values are consistent with hydrothermal sulfide deposition where the fluids containing bacteriogenic sulfide mixed with metal-bearing fluids. Replacement and remobilization from other Lisheen orebodies may have contributed to some of the higher sulfur isotope ratios observed in the Island Pod orebody. The excellent preservation of sulfide textures in the Island Pod orebody observed during this study demonstrates that it is an ideal location to study hydrothermal fluid evolution, including episodic fluid flow, mixing, precipitation, and compositional variations during the early main ore stage. In other Irish Zn-Pb orebodies, these early-ore textures are often obscured due to more complex dissolution and replacement processes, making interpretation of the early hydrothermal activity challenging. Consequently, the petrographic, mineral chemistry, and sulfur isotope studies of the Island Pod orebody presented here contribute to an enhanced understanding of ore-forming processes in similar deposits, where mineralization is often associated with more complex deformation or repeated pulses of hydrothermal activity.
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...