ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-01
    Description: Observations from outcrop and subsurface datasets indicate that key stratigraphic surfaces in ancient submarine slope successions are diachronous and form during periods of seascape degradation and sediment bypass. Evidence for time transgressive confinement of submarine channel–levee systems includes composite basal erosion surfaces, cut-off bends and hanging valleys, and external levees overlying lobe deposits. After the onset of a sediment supply cycle, progressive confinement will develop on the submarine slope, through a combination of incision and external levee construction, such that successive sediment gravity flows will maintain their downslope energy farther into the basin. This way, frontal lobe deposits are incised by channel systems and overlain by external levee deposits as the channel–levee system becomes more entrenched and propagates farther into the basin. The stratigraphic response on the related basin floor is fan growth and net progradation until a maximum basinward extent is reached, which corresponds to the time of maximum through-channel sediment transfer (bypass). At this time a maximum regressive surface forms, although in reality this is challenging to identify in the rock record. Conceptually, this basin-floor process response to progressive slope confinement at a point could be autocyclic, but would be amplified with an allogenically driven waxing-then-waning sediment supply cycle. The coupled progressive confinement of the submarine channel–levee system and basin-floor fan growth will result in a diachronous lithological basal surface to the system. This challenges the idea of the deep-water sequence boundary being isochronous and passing into a single correlative conformity at the base of the basin floor fan, or that there is temporal distinction between deposition by high- and low-density turbidity currents.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-01
    Description: The accretion of coarse-grained material at the shelf-edge rollover has been emphasized in studies of basin-margin progradation, despite fine-grained sediment (clay and silt) representing a volumetrically more significant component of subaqueous clinothems. The timing and processes of fine-grained sediment transport across the shelf and onto the slope remains an understudied facet of sedimentary-basin stratigraphy. Three exhumed basin-margin-scale clinothems of the Permian Waterford Formation, in the Karoo Basin, South Africa, offer outcrop examples of margin development through the accretion of mud during flooded shelf conditions. The progradation of wave-influenced sandy shelf topset deposits over a thick mudstone succession and beyond a previously established sand-rich shelf-edge rollover suggests that some periods of basin-margin progradation took place exclusively via dilute mud-rich gravity flows. Detailed outcrop and core study of offshore mudstones reveals a high content of organic debris and mica. Individual beds show normal and inverse grading, internal erosion surfaces, and moderate to low bioturbation, reflecting relatively stressed conditions in frequently supplied outer-shelf to upper-slope regions. The estimated low gradient (〈 0.7°) of the Karoo Basin margin and prevailing wave and/or storm conditions facilitated prolonged suspension of fluid mud and transport across the shelf and beyond the shelf-edge rollover in sediment gravity flows. This study represents a rare example of mudstone-dominated shelf-edge rollover deposits documented at outcrop and core, and demonstrates how accretion of fine-grained sediment can play a significant role in basin-margin progradation. Conventional depositional models do not adequately account for progradation of basin margins in the absence of sand supply, which implies potential risks in the identification of shelf-edge rollover positions and application of trajectory analysis in strongly progradational margins.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-01
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-31
    Description: Mud dominates volumetrically the fraction of sediment delivered and deposited in deep-water environments, and mudstone is a major component of basin-floor successions. However, studies of basin-floor deposits have mainly focused on their proximal sandstone-prone part. A consequent bias therefore remains in the understanding of depositional processes and stratigraphic architecture in mudstone-prone distal settings beyond the sandstone pinchouts of basin-floor fans. This study uses macroscopic and microscopic descriptions of over 500 m of continuous cores from research boreholes from the Permian Skoorsteenberg Formation of the Karoo Basin, South Africa, to document the sedimentology, stratigraphy, and ichnology of a distal mudstone-prone basin-floor succession. Very thin- to thin-bedded mudstones, deposited by low-density turbidity currents, stack to form bedsets bounded by thin packages (〈 0.7 m thick) of background mudstones. Genetically related bedsets stack to form bedset packages, which are bounded by thicker (〉 0.7 m thick) background mudstones. Stratigraphic correlation between cores suggests that bedsets represent the distal fringes of submarine fan lobe elements and/or lobes, and bedset packages represent the distal fringes of lobe complexes and/or lobe complex sets. The internal stacking pattern of bedsets and bedset packages is highly variable vertically and laterally, which records dominantly autogenic processes (e.g., compensational stacking, avulsion of feeder channels). The background mudstones are characterized by remnant tractional structures and outsize particles, and are interpreted as deposited from low-density turbidity currents and debris flows before intense biogenic reworking. These observations challenge the idea that mud accumulates only from hemipelagic suspension fallout in distal basin-floor environments. Thin background mudstones separating bedsets (〈 0.7 m thick) are interpreted to mainly represent autogenically driven lobe abandonment due to up-dip channel avulsion. The thicker background mudstones separating bedset packages (〉 0.7 m thick) are interpreted to dominantly mark allogenically driven regional decrease of sand supply to the basin floor. The recognition of sandstone-prone basin-floor fans passing into genetically linked distal fringe mudstones suggests that submarine lobes are at least ∼ 20 km longer than previously estimated. This study provides sedimentological, stratigraphic, and ichnological criteria to differentiate mudstones deposited in different sub-environments in distal deep-water basin-floor settings, with implications for the accurate characterization of basin-floor fan architecture, and their use as archives of paleoenvironmental change.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...