ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America  (15)
  • 1
    Publication Date: 2007-02-01
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 1995-07-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-01
    Description: We test the hypothesis that peak ground velocity (PGV) has an upper bound independent of earthquake magnitude and that this bound is controlled primarily by the strength of the seismogenic crust. The highest PGVs, ranging up to several meters per second, have been measured at sites within a few kilometers of the causative faults. Because the database for near-fault PGV is small, we use earthquake slip models, laboratory experiments, and evidence from a mining-induced earthquake to investigate the factors influencing near-fault PGV and the nature of its scaling. For each earthquake slip model we have calculated the peak slip rates for all subfaults and then chosen the maximum of these rates as an estimate of twice the largest near-fault PGV. Nine slip models for eight earthquakes, with magnitudes ranging from 6.5 to 7.6, yielded maximum peak slip rates ranging from 2.3 to 12 m/sec with a median of 5.9 m/sec. By making several adjustments, PGVs for small earthquakes can be simulated from peak slip rates measured during laboratory stick-slip experiments. First, we adjust the PGV for differences in the state of stress (i.e., the difference between the laboratory loading stresses and those appropriate for faults at seismogenic depths). To do this, we multiply both the slip and the peak slip rate by the ratio of the effective normal stresses acting on fault planes measured at 6.8 km depth at the KTB site, Germany (deepest available in situ stress measurements), to those acting on the laboratory faults. We also adjust the seismic moment by replacing the laboratory fault with a buried circular shear crack whose radius is chosen to match the experimental unloading stiffness. An additional, less important adjustment is needed for experiments run in triaxial loading conditions. With these adjustments, peak slip rates for 10 stick-slip events, with scaled moment magnitudes from -2.9 to 1.0, range from 3.3 to 10.3 m/sec, with a median of 5.4 m/sec. Both the earthquake and laboratory results are consistent with typical maximum peak slip rates averaging between 5 and 6 m/sec or corresponding maximum near-fault PGVs between 2.5 and 3 m/sec at seismogenic depths, independent of magnitude. Our ability to replicate maximum slip rates in the fault zones of earthquakes by adjusting the corresponding laboratory rates using the ratio of effective normal stresses acting on the fault planes suggests that the strength of the seismogenic crust is the important factor limiting the near-fault PGV.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-08-01
    Description: The 28 September 2004 Parkfield, California, earthquake (M (sub w) 6.0) and four aftershocks (M (sub w) 4.7-5.1) were recorded on 12 accelerograph stations of the U.S. Geological Survey Parkfield seismic array (UPSAR), an array of three-component accelerographs occupying an area of about 1 km (super 2) located 8.8 km from the San Andreas fault. Peak horizontal acceleration and velocity at UPSAR during the mainshock were 0.45 g and 27 cm/sec, respectively. We determined both time-varying and peak values of ground dilatations, shear strains, torsions, tilts, torsion rates, and tilt rates by applying a time-dependent geodetic analysis to the observed array displacement time series. Array-derived dilatations agree fairly well with point measurements made on high sample rate recordings of the Parkfield-area dilatometers (Johnston et al., 2006). Torsion Fourier amplitude spectra agree well with ground velocity spectra, as expected for propagating plane waves. A simple predictive relation, using the predicted peak velocity from the Boore-Atkinson ground-motion prediction relation (Boore and Atkinson, 2007) scaled by a phase velocity of 1 km/sec, predicts observed peak Parkfield and Chi-Chi rotations (Huang, 2003) well. However, rotation rates measured during M (sub w) 5 Ito, Japan, events observed on a gyro sensor (Takeo, 1998) are factors of 5-60 greater than those predicted by our predictive relation. This discrepancy might be caused by a scale dependence in rotation, with rotations measured over a short baseline exceeding those measured over long baselines. An alternative hypothesis is that events having significant non-double-couple mechanisms, like the Ito events, radiate much stronger rotations than double-couple events. If this is true, then rotational observations might provide an important source of new information for monitoring seismicity in volcanic areas.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-23
    Description: For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter Formula , where Formula is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-08-01
    Description: The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/sec (super 2) compared to -24.2 cm/sec (super 2) for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3-0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant differences along the northwest edge that may indicate large strains across that edge of the basin. The length of each record after the main S wave are all longer at basin stations compared to those outside. This increase in duration of ground shaking is probably caused by amplification of ground motion at basin stations, although coda Q (0.67-1.30 Hz) is slightly larger inside the basin compared to those at local stations outside the basin. Durations correlate with depth to basement. These motions are in the range that can induce damage in buildings and may have contributed to the structural collapse of multistory buildings in the Taipei basin.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-09-01
    Description: Using a short-baseline seismic array (U.S. Geological Survey Parkfield Dense Seismograph Array [UPSAR]) about 12 km west of the rupture initiation of the 28 September 2004 M 6.0 Parkfield, California, earthquake, we have observed the movement of the rupture front of this earthquake on the San Andreas fault. The sources of high-frequency arrivals at UPSAR, which we use to identify the rupture front, are mapped onto the San Andreas fault using their apparent velocity and back azimuth. Measurements of apparent velocity and back azimuth are calibrated using aftershocks, which have a compact source and known location. Aftershock back azimuths show considerable lateral refraction, consistent with a high-velocity ridge on the southwest side of the fault. We infer that the initial mainshock rupture velocity was approximately the Rayleigh speed (with respect to slower side of the fault), and the rupture then slowed to about 0.66beta near the town of Parkfield after 2 sec. The last well-correlated pulse, 4 sec after S, is the largest at UPSAR, and its source is near the region of large accelerations recorded by strong-motion accelerographs and close to northern extent of continuous surface fractures on the southwest fracture zone. Coincidence of sources with preshock and aftershock distributions suggests fault material properties control rupture behavior. High-frequency sources approximately correlate with the edges of asperities identified as regions of high slip derived from inversion of strong-motion waveforms.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-05-01
    Description: In two previous articles we presented a formulation for inferring the strains and rotations of the ground beneath a seismic array having a finite footprint. In this article we derive expressions for the error covariance matrices of the inferred strains and rotations, and we present software for the calculation of ground strains, rotations, and their variances from short baseline array ground-motion data.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-12-01
    Description: Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...