ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-01
    Description: We perform full elastic wave-field simulations within the Taipei basin by using a three-dimensional (3D) discontinuous finite-difference method. The 3D Taipei basin model is determined from a seismic reflection study. Two major subsurfaces, the Songshan formation (surface soil layer) and the basin basement, are constituted in the model. A parallel-based composite grid technique, a containing scalene grid and a discontinuous grid, is developed in this study to deal with the possible numerical problem of thin depth and low velocity of the Songshan formation. Taking advantage of the composite grid, the resolution of the subsurface structure can be reached to 20 m, and a higher frequency (up to 3 Hz) of the synthetic waveform can be achieved. In our strong ground motion simulations, we assume a constant velocity in each subsurface. Three different types of models are considered in the study: the Songshan formation with a basement structure model, a basin basement model, and a layered half-space model. Results indicate that only the model with both the Songshan formation and the basement structure can produce the apparent basin amplification effects. First, the surface wave generated after the primary S wave is trapped at the shallow part of the basin. Then, when the wave propagates through the deepest part of the basin, most of the energy is reflected from the boundary and focused back into the basin. In addition, part of the seismic wavefront turns and follows the shallow basin edge resulting in further amplification. Our study indicates that the complex Taipei basin geometry and fairly low velocity of the Songshan formation dominate the amplification and wave propagation behavior that result in extraordinary strong shaking patterns in the Taipei metropolitan region.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-12-01
    Description: To better understand the structure of the San Andreas fault (SAF) at Burro Flats in southern California, we acquired a three-dimensional combined set of seismic reflection and refraction profiles centered on the main active trace at Burro Flats. In this article, we discuss the variation in shallow-depth velocities along each seismic profile, with special emphasis on the 1500 m/sec P-wave velocity contour, which can be an indicator of shallow-depth water-saturated unconsolidated sediments. Along the four seismic profiles, minimum depths of the groundwater table, as inferred from 1500 m/sec velocity contour, range from 10 to about 20 m. The largest variations in depth to the top of the groundwater table occur in areas near mapped faults, suggesting that the groundwater flow in Burro Flats is strongly affected by the locations of fault traces. We also used the seismic data to develop seismic reflection images that show multiple strands of the SAF in the upper 60 m. Reflectors above the 10 m depth probably correspond to Holocene alluvial deposits; reflectors below the 15 m depth probably arise from velocity or density variations within the Precambrian gneiss complex, likely due to weathering. Apparent vertical offsets of reflectors are observed along profiles (lines 1 and 2) that are normal to the SAF, indicating minor apparent vertical offsets on the SAF at shallow depths. Along line 2, the apparently vertically offset reflectors correlate with zones of relatively low P-wave velocity. Along the central part of lines 1 and 2, the faults form a flower structure, which is typical of strike-slip faults such as the SAF.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-01
    Description: We use the spectral-element method to simulate strong ground motion throughout the Taipei metropolitan area. Mesh generation for the Taipei basin poses two main challenges: (1) the basin is surrounded by steep mountains, and (2) the city is located on top of a shallow, low-wave-speed sedimentary basin. To accommodate the steep and rapidly varying topography, we introduce a thin high-resolution mesh layer near the surface. The mesh for the shallow sedimentary basin is adjusted to honor its complex geometry and sharp lateral wave-speed contrasts. Variations in Moho thickness beneath Northern Taiwan are also incorporated in the mesh. Spectral-element simulations show that ground motion in the Taipei metropolitan region is strongly affected by the geometry of the basin and the surrounding mountains. The amplification of ground motion is mainly controlled by basin depth and shallow shear-wave speeds, although surface topography also serves to amplify and prolong seismic shaking.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...