ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sage  (5)
  • 1
    Publication Date: 2014-12-10
    Description: Peatlands in northern Ontario, Canada, archive multiple biological indicators, including macrofossils, algae, testate amoebae, and pollen. These proxies can provide insights concerning the timing and nature of long-term climatic and environmental changes. The Hudson Bay Lowlands (HBL) of central Canada contain one of Earth’s largest continuous peatland complexes, and thus comprehensive spatial and temporal studies are needed to understand the implications of climate change on carbon cycling. Diatom assemblages were examined in three cores retrieved from ombrotrophic bogs across two Canadian terrestrial ecozones. Comparisons were made with testate amoebae and macrofossil data previously analyzed from these cores, as well as with regional pollen records from surrounding peatlands. From ~2000 to ~600 cal. BP, changes in diatom composition likely reflect hydrosere succession within the peatland, including fluctuations in connectivity to the water table and pH changes. From ~600 cal. BP to present, the synchronous timing of changes in diatoms and testate amoebae are tracking drying conditions and subsequent microhabitat variations that occur within bogs. It is possible that diatoms are tracking subtle changes in the stability of peat microforms including bog hollows and hummocks, highlighting their sensitivity to small chemical change, whereas testate amoebae are tracking the lowering of a peatland water table and subsequent drying of the peatland. The use of multiple proxies provides a more holistic approach to interpreting past ecological succession and responses to climate within peatlands. When present and well preserved, diatoms can be applied to track drying conditions in bogs, in terms of both hydrosere succession and present climatic change.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-22
    Description: Peat cores from Wylde Lake Bog in temperate southern Ontario, Canada, were examined to determine factors affecting Holocene ecological change and long-term rate of carbon accumulation (LORCA). By 10,250 cal. BP, a marsh was established, characterized by sediments with higher bulk density, highly decomposed material in the macrofossil record, and lower LORCA. By 8100 cal. BP, the marsh was replaced by a peat-accumulating fen dominated by herbaceous taxa and non- Sphagnum mosses. Around 4000 cal. BP, transition to a Sphagnum -dominated bog took place. These directional changes suggest a strong role for autogenesis, although periodic fluctuations in macrofossil assemblages and in LORCA suggest an important secondary role for climatic change and disturbance in explaining Holocene changes. LORCA remained fairly stable through the fen and bog zones, ~18 g C/m 2 /yr. In the high-resolution record spanning the most recent 1800 years, relatively higher values for LORCA and macrofossils associated with wetter conditions were recorded around 1400 cal. BP, partially coincident with the ‘Medieval Climate Anomaly’. LORCA decreases to minimum values for the record during part of the ‘Little Ice Age’ as woody macrofossils increase, suggesting a drier peat surface. The most recent portion of the record shows significant changes in LORCA and in bog vegetation associated with anthropogenic land clearance and damming. The charcoal record suggests that fire did not play an important role in peatland dynamics in the pre-industrial Holocene; however, a major anthropogenic fire in ad 1870 significantly altered the peatland, affecting surface vegetation heterogeneously.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-22
    Description: Northern peatlands are a globally significant carbon (C) reservoir, yet also function as dynamic methane (CH 4 ) sources to the atmosphere. The fate of peatland C stores and related climate system feedbacks remain uncertain under scenarios of a changing climate and enhanced anthropogenic pressure. Here, we present a synthesis of Holocene peatland C dynamics for the Hudson Bay Lowlands (HBL), Canada, in relation to the past atmospheric CH 4 trends, glacial isostatic adjustment, and paleoclimate. We report that peatland age and trophic status, together with paleoclimate, contribute to explaining some of the temporal variation in C accumulation rates (CARs) in the HBL. Our results show that younger, minerotrophic peatlands accumulate C faster, and although detailed paleoclimate data are not available, the results suggest the possibility of higher CARs in association with warmer Holocene climates. Peat initiation rates and CARs were greatest during the mid-Holocene; however, our results reveal that two-thirds of the HBL C pool is stored in peat of late Holocene age, owing to long-term peatland expansion and development. Whereas the HBL has been a net C sink since mid-Holocene peat initiation, the HBL also appears to have been a modest C source, with 85% of the losses occurring during the late Holocene as a consequence of the gradual decay of previously accrued peat. Late Holocene peat decay, under wetter climatic conditions, and from a landscape occupied by an abundance of minerotrophic peatlands, indicates that the HBL may have been a natural terrestrial source of CH 4 to the late Holocene atmosphere. While the peatlands of the HBL may continue to function as a globally significant C store, ongoing C losses from the HBL may have important implications for the global C budget and climate system.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-22
    Description: Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45°N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 ± 3% (standard deviation) for Sphagnum peat, 51 ± 2% for non- Sphagnum peat, and at 49 ± 2% overall. Dry bulk density averaged 0.12 ± 0.07 g/cm 3 , organic matter bulk density averaged 0.11 ± 0.05 g/cm 3 , and total carbon content in peat averaged 47 ± 6%. In general, large differences were found between Sphagnum and non- Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 ± 2 (standard error of mean) g C/m 2 /yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25–28 g C/m 2 /yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu .
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-19
    Description: Postglacial paleoenvironmental changes and landscape development in the Hudson Bay Lowlands in subarctic Canada were inferred using sediment properties and diatom and pollen assemblages in the sediments of a lake raised above the surrounding peatlands in an ice-marginal landform. Coarse-grained, inorganic sediments at the base of the Lake AT01 core suggest a high-energy periglacial environment, following isostatic emergence from Hudson Bay around 6840 cal. BP. Initial diatom assemblages dominated by Fragilaria spp., and pollen of Shepherdia canadensis , indicate early successional conditions in a recently deglaciated environment. Around 6200 cal. BP, tychoplanktonic Fragilarioid diatoms are replaced by large benthics. Coincident increases in Equisetum spores, Cyperaceae pollen and sediment organic matter suggest the establishment of a more productive macrophyte-rich shallow lake. While the Holocene Thermal Maximum and subsequent Neoglacial may have contributed to these shifts, pollen and diatom records suggest only subtle responses to Holocene climatic changes. A core chronology inferred from radioisotopes suggests a hiatus in sediment accumulation between 3650 and 200 cal. BP. Peaks in carbonate inferred from loss-on-ignition and increases in bulk density in that section of the core suggest some effect of erosional or thermokarst processes, or the breaching of a sandbar, now a remnant island in the lake, in the drainage of the lake and ensuing hiatus. Sediment accumulation resumed within the past two centuries; diatom assemblages in the uppermost section are characterized initially by benthic diatoms of smaller valve size compared with the pre-hiatus assemblages. More recently, increases in the planktonic diatom Cyclotella stelligera are recorded, signaling significant environmental changes.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...