ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America  (3)
  • SSA  (2)
Collection
Publisher
  • 1
    Publication Date: 2019-02-13
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-30
    Description: This work describes a procedure to configure U.S. Geological Survey (USGS)‐ShakeMap for a given region. The procedure is applied to Italy to update and improve the ShakeMap service provided by Istituto Nazionale di Geofisica e Vulcanologia (INGV). The new configuration features (1) the adoption of recently developed ground‐motion models (GMMs) and of an updated map of VS30 for the local site effects and (2) the adoption of the newly developed USGS‐ShakeMap version 4 (v.4) software (see Data and Resources). We have used the same subdivision in tectonic regimes adopted for the GMMs for the new Italian seismic hazard model (MPS19, Meletti et al., 2017) and selected the most appropriate GMMs after application of a ranking procedure consisting of statistical tests. A cross‐validation technique has been applied to test the goodness of the selected configuration and to compare the ShakeMaps obtained with the old (Michelini et al., 2008) and the new settings. Finally, the INGV ShakeMap workflow has been renovated to exploit the data and analysis chain implemented at INGV from real‐time data streams acquisition to analyst revised waveforms including additional data (e.g., revised location, fault geometry) that may become available days after the event occurrence.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-14
    Description: Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require rapid characterization of an earthquake’s location, size, and other parameters, usually provided by real‐time seismogram analysis using established, rule‐based, seismological procedures. Powerful, new machine learning (ML) tools analyze basic data using little or no rule‐based knowledge, and an ML deep convolutional neural network (CNN) can operate directly on seismogram waveforms with little preprocessing and without feature extraction. How a CNN will perform for rapid automated earthquake detection and characterization using short single‐station waveforms is an issue of fundamental importance for earthquake monitoring. For an initial investigation of this issue, we adapt an existing CNN for local earthquake detection and epicentral classification using single‐station waveforms (Perol et al., 2018), to form a new CNN, ConvNetQuake_INGV, to characterize earthquakes at any distance (local to far‐teleseismic). ConvNetQuake_INGV operates directly on 50‐s three‐component broadband single‐station waveforms to detect seismic events and obtain binned probabilistic estimates of the distance, azimuth, depth, and magnitude of the event. The best performance of ConvNetQuake_INGV is obtained using a last convolutional layer with fewer nodes than the number of output classifications, a form of information bottleneck. We show that ConvNetQuake_INGV detects very well (accuracy 87%) and characterizes moderately well earthquakes over a broad range of distances and magnitudes, and we analyze outlier results and indications of overfitting of the CNN training data. We find weak evidence that the CNN is performing more than high‐dimensional regression and pattern recognition, and is generalizing information or learning, to provide useful characterization of new events not represented in the training data. We expect that real‐time ML procedures such as ConvNetQuake_INGV, perhaps incorporating rule‐based knowledge, will ultimately prove valuable for rapid detection and characterization of earthquakes for earthquake response and tsunami early warning.
    Description: Published
    Description: 517–529
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-01
    Description: We present a web portal for the prompt visualization of the maps of ground shaking generated using the USGS ShakeMap 4 software (Worden et al., 2020). The web interface renders the standard products provided by ShakeMap dynamically (using Leaflet) and statically (standard shakemaps). The information included in the dynamic maps can be onfigured through different overlays. The dual view rendering modality allows presenting side-by-side maps of different intensity measurements. In addition, for each earthquake, it is possible to download all the data that contributed to the calculation, together with information on the seismological models adopted. The appearance of the web portal is easily configurable by replacing the logo and banners. The software can be installed both on laptops and on server computers. The user can opt between the docker image or installation of the software after installation of a web server (e.g., NGINX or Apache).
    Description: Published
    Description: 3481–3488
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Keywords: shaking ; intensity ; macroseismic ; impact ; terremoto ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-21
    Description: Machine‐learning (ML) methods have seen widespread adoption in seismology in recent years. The ability of these techniques to efficiently infer the statistical properties of large datasets often provides significant improvements over traditional techniques when the number of data are large (millions of examples). With the entire spectrum of seismological tasks, for example, seismic picking and detection, magnitude and source property estimation, ground‐motion prediction, hypocenter determination, among others, now incorporating ML approaches, numerous models are emerging as these techniques are further adopted within seismology. To evaluate these algorithms, quality‐controlled benchmark datasets that contain representative class distributions are vital. In addition to this, models require implementation through a common framework to facilitate comparison. Accessing these various benchmark datasets for training and implementing the standardization of models is currently a time‐consuming process, hindering further advancement of ML techniques within seismology. These development bottlenecks also affect “practitioners” seeking to deploy the latest models on seismic data, without having to necessarily learn entirely new ML frameworks to perform this task. We present SeisBench as a software package to tackle these issues. SeisBench is an open‐source framework for deploying ML in seismology—available via GitHub. SeisBench standardizes access to both models and datasets, while also providing a range of common processing and data augmentation operations through the API. Through SeisBench, users can access several seismological ML models and benchmark datasets available in the literature via a single interface. SeisBench is built to be extensible, with community involvement encouraged to expand the package. Having such frameworks available for accessing leading ML models forms an essential tool for seismologists seeking to iterate and apply the next generation of ML techniques to seismic data.
    Description: Published
    Description: 1695–1709
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...