ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-07
    Description: Stromboli is a volcanic island that is part of the Aeolian arch in the Mediterranean Sea (Italy). It is one of the most active volcanoes in Europe. Its moderate, but persistent, explosive activity makes it an ideal site for studies into the seismogenic processes in volcanic areas (Auger et al. 2006; Chouet et al. 2003; Chouet et al. 2008; D’Auria and Martini 2008; Del Pezzo et al. 1992; Esposito et al. 2008; Jaupart and Vergniolle 1989; Martini et al. 2007); it also attracts a lot of tourists. In the past, this combination of tourism and volcanic activity was not considered to be dangerous, but over the past few decades, Stromboli has produced stronger explosions that have in some cases injured people visiting the summit area. Moreover, in the recent history of Stromboli, two effusive eruptions have occurred that were accompanied by dangerous phenomena such as tsunami and vulcanian explosions. The first of these effusive eruptions (on 28 December 2002) produced a lava flow on the Sciara del Fuoco side, which is the northwest flank of the island. Two days later, a landslide occurred on this flank, which resulted in the propagation of a 10-m tsunami wave around the coasts of the island. These events demonstrate that Stromboli can be dangerous, even if its activity is not very energetic. Indeed, the Sciara del Fuoco structure is a weakness zone of the volcanic edifice that fractures when the explosive activity increases, giving rise to this effusive activity (Martini et al. 2007). Moreover, during the past two effusive eruptions, vulcanian explosions were associated with the end stages of the effusive phases. These damaged the village of Ginostra and caused fires in the vegetation. For these reasons, in January 2003, the Istituto Nazionale di Geofisica e Vulcanologia (INGV; the Italian National Institute of Geophysics and Volcanology) started to install a broadband seismic network that is designed to monitor Stromboli’s volcanic activity. This nature of the activity requires broadband instruments because the eruptive processes generate signals that span a wide range of frequencies (Chouet et al. 2003; Neuberg et al. 1994). At present, the typical seismic signals that are being recorded on Stromboli are: volcanic tremors with frequencies of 1–6 Hz; explosion quakes that include components with different frequency contents, ranging from some tens of seconds up to 10 Hz; long-period (LP) earthquakes with frequencies of 1–6 Hz; volcano-tectonic (VT) earthquakes with a frequency band of 1–20 Hz; and landslide signals with frequencies of 1–10 Hz. In particular, very long period (VLP) events with frequencies of 0.02–1 Hz are associated with the Strombolian explosions and represent the lower frequency content of the explosion quakes. Furthermore, the network records regional and teleseismic events.
    Description: Published
    Description: 435-439
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Broadband Seismic Network ; Stromboli Volcano ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-30
    Description: Mt. Vesuvius (southern Italy) is one of the volcanoes that poses the greatest risk in the world because of its highly explosive eruptive style and its proximity to densely populated areas. The urbanization around Mt. Vesuvius began in ancient times, and the impact of eruptions on human activities has been severe. This is testified to by the ruins of Pompeii, which are covered by the products of the plinian eruption that took place in A.D. 79 (Sigurdsson et al. 1985), and more recently by the published reports of the eruptions that occurred from 1631 to 1944. For these reasons, Mt. Vesuvius was also one of the first volcanoes to be equipped with monitoring instruments. Pioneering instrumental observations began just before the second half of the 1800s, when the Vesuvius Observatory was founded in 1841 (Imbò 1949). At that time, Vesuvius was very active (Ricciardi 2009), and its effusive and explosive eruptions often caused damage to the surrounding areas. At the same time, it was a famous tourist attraction that drew travelers from all over the world (Gasparini and Musella 1991). Since the middle of the 1800s, at least 12 eruptions have occurred that have been superimposed on persistent intra-crater activity that has been characterized by Strombolian explosions and by the formation of small lava lakes. The last eruption occurred on 18 March 1944 and marked a change in the status of Mt. Vesuvius, as it entered a closed-conduit phase that persists today. Following this last eruption, a change occurred in the 1960s, as documented by an increase in the occurrence rate of earthquakes. Since 1972, the monitoring of Mt. Vesuvius has improved over time and become more systematic, so that there is a remarkable dataset relating to the current phase of quiescence. Over more than a century and a half of observations, many monitoring instruments have been used for Mt. Vesuvius, including early seismometers, several of which are now kept in the Museum of Volcanology of the Vesuvius Observatory. The present monitoring system is based on seismological, geodetical geodetical, and geochemical observations performed using an instrumental network that was designed on the basis of the current state of the volcano while also taking into account the likely scenario of future unrest.
    Description: Published
    Description: 625-634
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Seismological Monitoring ; Mount Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...