ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Keywords Antipredator behavior  (1)
  • Mating dynamics  (1)
  • Springer  (2)
  • Public Library of Science
Collection
Publisher
  • Springer  (2)
  • Public Library of Science
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 105 (1996), S. 179-188 
    ISSN: 1432-1939
    Keywords: Predation risk ; Mating dynamics ; Species interactions ; Indirect effects ; Streams
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous studies have shown that green sunfish, Lepomis cyanellus, have strong effects on the activity, habitat use, social interactions and mating dynamics of a stream-dwelling water strider, Aquarius remigis (family Gerridae, hence, gerrids). In nature, however, stream pools often contain not just sunfish and water striders, but also smaller fish such as minnows. Here, we used factorial experiments in seminatural streams to document the direct and indirect effects of sunfish and fathead minnows, Pimephales promelas, on water strider survival and behavior. Sunfish, minnows and gerrids all consume surface prey (here, crickets); thus these three species are potential food competitors. Sunfish eat minnows. Accordingly, the presence of sunfish caused minnows to increase their schooling behavior and shift their activity from the surface toward the bottom substrate. The presence of sunfish was also associated with an increase in the number of missing gerrids, whereas minnows caused relatively little gerrid disappearance. Most interestingly, the presence of minnows decreased the effect of sunfish on gerrid disappearance rates; that is, minnows apparently had an indirect positive effect on water strider survival. We suggest that this indirect positive effect reflects the fact that minnows are alternative prey for sunfish. The effects of sunfish and minnows on gerrid mortality explained the influence of these fish on gerrid behavior. Sunfish caused decreases in male gerrid activity, female availability, mating activity, mating frequency and mating duration. Larger males had a mating advantage over smaller males only in pools with sunfish and no minnows. Sunfish also caused a borderline significant decrease in the large female mating advantage. These results were all observed in previous studies and can be viewed as adaptive responses to predation risk. These patterns were not consistent with the expected effects of sunfish as food competitors with water striders. In contrast, minnows had relatively little influence on water strider behavior and the few significant effects were the opposite of those of sunfish. Minnows caused increases in female activity and in mating duration, a decrease in the large male mating advantage and an increase in the large female mating advantage. These patterns fit the view that minnows caused an increase in gerrid hunger, i.e., that minnows acted as food competitors with gerrids. Finally, planned contrasts against controls showed that, in the presence of both sunfish and minnows, water striders showed no significant behavioral responses to fish (i.e., gerrid behavior in pools with sunfish and minnows did not significantly differ from behavior in fishless pools). The most likely mechanism explaining this pattern is a dilution of sunfish predation risk due to the presence of minnows serving as alternative prey for sunfish.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 49 (2000), S. 48-56 
    ISSN: 1432-0762
    Keywords: Keywords Antipredator behavior ; Phylogenetic inertia ; Conflicting selection pressures ; Evolution ; Salamanders
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The streamside salamander, Ambystoma barbouri, exhibits ineffective antipredator behavior (high emergence rate from refuge, and high activity while out of refuge) and thus suffers heavy predation in stream pools with sunfish. A. barbouri evolved relatively recently from an ancestor that closely resembled a sister species, A. texanum, which breeds in fishless, ephemeral ponds. Sunfish thus represent a relatively new selection pressure for A. barbouri. Phylogenetic inertia predicts that (1) A. texanum should be very poor at coping with fish and (2) because it has only recently been exposed to fish, A. barbouri should still be poor at avoiding fish, but due to its recent exposure to fish, A. barbouri should be better than A. texanum at coping with sunfish. Experimental results provided mixed support for these predictions. As predicted, A. texanum suffered heavy sunfish predation. Compared to A. texanum, A. barbouri showed a greater tendency to initiate alarm moves that enhanced escape success from fish. However, in both the presence and absence of fish, A. barbouri showed higher emergence rates from refuge and higher movement while out of refuge than A. texanum. These behaviors tend to increase exposure to sunfish, i.e., for these key behaviors, A. barbouri apparently evolved in the wrong direction as far as fish predation is concerned. Due to these offsetting effects (increased exposure to fish, increased escape success), A. barbouri is no better at surviving with sunfish than A. texanum. A possible explanation for the high activity of A. barbouri is its use of highly ephemeral habitats (relative to A. texanum) that favor the evolution of higher activity, feeding, and developmental rates for A. barbouri relative to A. texanum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...