ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Menasha, Wis. : Periodicals Archive Online (PAO)
    The Accounting Review. 43:2 (1968:Apr.) 225 
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-17
    Description: The scale dependent distribution of kinetic energy is probed at the surface in the Gulf of Mexico using surface drifters from the Grand Lagrangian Deployment (GLAD) experiment. The second order velocity structure function and its decomposition into rotational and divergent components are examined. The results reveal that the divergent component, compared to the rotational component, dominates at scales below 5 km, and the pattern is reversed at larger scales. The divergent component has a slope near 2/3 below 5 km, similar to an energy cascade range ( k  − 5/3 ). The third order velocity structure function at scales below 5km is negative and implies a forward cascade of energy to smaller scales. The rotational component has a steeper slope, roughly 1.5, from scales of 5km up to the deformation radius. This is similar to a 2D enstrophy cascade, although the slope is shallower than the predicted 2. There is a brief 2/3 range from the deformation radius to 200 km, suggestive of a 2D inverse cascade.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-25
    Description: Arctic column ozone reached record low values (∼310 DU) during March of 2011, exposing Arctic ecosystems to enhanced UV-B. We identify the cause of this anomaly using the Oslo CTM2 atmospheric chemistry model driven by ECMWF meteorology to simulate Arctic ozone from 1998 through 2011. CTM2 successfully reproduces the variability in column ozone, from week to week, and from year to year, correctly identifying 2011 as an extreme anomaly over the period. By comparing parallel model simulations, one with all Arctic ozone chemistry turned off on January 1, we find that chemical ozone loss in 2011 is enhanced relative to previous years, but it accounted for only 23% of the anomaly. Weakened transport of ozone from middle latitudes, concurrent with an anomalously strong polar vortex, was the primary cause of the low ozone When the zonal winds relaxed in mid-March 2011, Arctic column ozone quickly recovered.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-18
    Description: Large-scale budget calculations and numerical model process studies suggest that lateral eddy heat fluxes have an important cooling effect on the Norwegian Atlantic Current (NwAC) as it flows through the Nordic Seas. But observational estimates of such fluxes have been lacking. Here, wintertime surface eddy heat fluxes in the eastern Nordic Seas are estimated from surface drifter data, satellite data and an eddy-permitting numerical model. Maps of the eddy heat flux divergence suggest advective cooling along the path of the NwAC. Integrating the flux divergence over temperature classes yields consistent estimates for the three data sets; the waters warmer than about 6°C are cooled while the cooler waters are warmed. Similar integrations over bottom depth classes show that regions shallower than about 2000 m are cooled while deeper regions are warmed. Finally, integrating the flux divergence along the core of the NwAC suggests that the highest eddy-induced heat loss at the surface is along the steepest part of the continental slope, east of the Lofoten Basin. The model fields indicate that cooling of the current by lateral eddy fluxes is comparable to or larger than the local heat loss to the atmosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-06
    Description: The response of a two-layer quasigeostrophic ocean model to basin scale stochastic wind forcing is investigated. As found in many previous studies, long Rossby waves are excited at the eastern boundary of the square model basin and the waves are baroclinically unstable. A novel aspect we focus on here is that the instability leads to the generation of zonal jets throughout the domain. The jets are actually wave-like in nature, and result directly from the instability. The “jets” appear when averaging the oceanic zonal velocity field over fixed periods of time. The longer the averaging period, the weaker the jets as the latter are in fact time-varying. The jets occur for a wide range of stratification, strength of stochastic forcing and the presence or not of a time mean circulation. The mechanism of jet generation described here thereby provides an explanation for the recent observations of alternating zonal jets in the mid-latitude oceans.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-11
    Description: Satellite-derived surface height fields reveal that variability in the central and southern basins of the Caspian Sea is correlated with topography. Consistently, empirical orthogonal functions from current meter data from the southern basin are aligned with the isobaths. In addition, the gravest mode, which accounts for over 80% of the variance, has an equivalent barotropic structure in the vertical. To what extent this variability can be modeled using a linear analytical model is examined. The latter assumes equivalent barotropic flow aligned with the geostrophic contours, which in turn are dominated by the topography. With ECMWF winds and ETOPO2 topography, the model yields surface height deviations which are significantly correlated with satellite-derived estimates on seasonal and longer time scales in the central basin. The model is somewhat less successful in the southern basin, where the stratification is stronger. Nevertheless, the results are encouraging, given the extreme simplicity of the model.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-28
    Description: We describe a sequence of supraglacial lakes on the George VI Ice Shelf, Antarctica, that migrate along the boundary of the ice shelf with Alexander Island in the manner of a traveling wave, with a velocity that differs from the local ice-shelf flow in both magnitude and direction. These lakes are arranged en échelon along a grounding line of the ice shelf where the flow displays the atypical feature of being directed toward land. A simple model presented here suggests that the propagating lakes form in the depressions of a viscous-buckling wave associated with compressive ice-shelf stresses and ice-flow directed obliquely toward the coastline. The existence of these lakes and their propagation gives rise to the implication that other ice-shelf surface features (e.g., patterns of swells and depressions, surface lakes, and drainage) can be organized by large-scale viscous buckling behavior, when ice-shelf flow is strongly compressive.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-26
    Description: The Norwegian Atlantic Current (NwAC) and its eddy field are examined using data from surface drifters. The data set used spans nearly 20 years, from June 1991 to December 2009. The results are largely consistent with previous estimates, which were based on data from the first decade only. With our new data set, statistical analysis of the mean fields can be calculated with larger confidence. The two branches of the NwAC, one over the continental slope and a second further offshore, are clearly captured. The Norwegian Coastal Current is also resolved. In addition, we observe a semipermanent anticylonic eddy in the Lofoten Basin, a feature seen previously in hydrography and in models. The eddy kinetic energy (EKE) is intensified along the path of the NwAC, with the largest values occurring in the Lofoten Basin. The strongest currents, exceeding 100 cm s−1, occur west of Lofoten. Lateral diffusivities were computed in five domains and ranged from 1–5 × 107 cm2 s−1. The Lagrangian integral time and space scales are 1–2 days and 7–23 km, respectively. The data set allows studies of seasonal and interannual variations as well. The strongest seasonal signal is in the NwAC itself, as the mean flow strengthens by approximately 20% in winter. The EKE and diffusivities on the other hand do not exhibit consistent seasonality in the sampled regions. There are no consistent indications of changes in either the mean or fluctuating surface velocities between the 1990s and 2000s.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-26
    Description: Relative dispersion statistics and related Lagrangian parameters, not well observed in coastal regions, are obtained from in situ surface drifter observations and presented in the context of Lagrangian stochastic models. Clusters of GPS tracked surface drifters, with initial horizontal spacing of 5–10 m, were repetitively deployed in the Santa Barbara Channel from July 2004 to June 2005. The drifters sampled their position every 10 min for 1–2 days. Mean square pair separation distance, or relative dispersion, increases approximately exponentially in time during the first ∼5 h of sampling (e-folding time of 0.9 h). Thereafter, the dispersion increase is approximately quadratic in time. Large error bars on the observed mean dispersion, and higher-order Lagrangian statistics that are not clearly supportive of the aforementioned dispersion curves, indicate uncertainty. The mean square relative (separation) velocity shows near-linear growth with pair separation distance, extending from 0.3 to 85 cm2 s−2 over length scales from ∼8 m to 2.2 km. The observed length scale dependency in square relative velocity is investigated in a Lagrangian stochastic model (LSM) for a cloud of particles. Modeled dispersion agrees with observations only when the velocity scale for the sub-grid scale random normal deviate in the LSM (typically a constant) is length scale dependent, and takes into consideration the observed scaling. Occasional large (〉25 cm s−1) discrepancies in grid-scale velocities between drifters and HF radar cause general disagreement in distributions of ending positions of LSM trajectories when compared with Lagrangian observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-10
    Description: [1]  Arctic column ozone reached record low values (∼310 DU) during March of 2011, exposing Arctic ecosystems to enhanced UV-B. We identify the cause of this anomaly using the Oslo CTM2 atmospheric chemistry model driven by ECMWF meteorology to simulate Arctic ozone from 1998 through 2011. CTM2 successfully reproduces the variability in column ozone, from week to week, and from year to year, correctly identifying 2011 as an extreme anomaly over the period. By comparing parallel model simulations, one with all Arctic ozone chemistry turned off on January 1, we find that chemical ozone loss in 2011 is enhanced relative to previous years, but it accounted for only 23% of the anomaly. Weakened transport of ozone from middle latitudes, concurrent with an anomalously strong polar vortex, was the primary cause of the low ozone When the zonal winds relaxed in mid-March 2011, Arctic column ozone quickly recovered.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...