ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (1)
  • Physics  (1)
  • Wiley-Blackwell  (2)
  • Periodicals Archive Online (PAO)
  • Springer Science + Business Media
Collection
Publisher
  • Wiley-Blackwell  (2)
  • Periodicals Archive Online (PAO)
  • Springer Science + Business Media
Years
  • 1
    ISSN: 0730-2312
    Keywords: IL-3-dependent FDC-P1 cells ; histone H4 gene ; cell cycle control ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To evaluate transcriptional mechanisms during cytokine induction of myeloid progenitor cell proliferation, we examined the expression and activity of transcription factors that control cell cycle-dependent histone genes in interleukin-3 (IL-3)-dependent FDC-P1 cells. Histone genes are transcriptionally upregulated in response to a series of cellular regulatory signals that mediate competency for cell cycle progression at the G1/S-phase transition. We therefore focused on factors that are functionally related to activity of the principal cell cycle progression at the G1/S-phase transition. We therefore focused on factors that are functionally related to activity of the principal cell cycle regulatory element of the histone H4 promoter:CDC2, cyclin A, as well as RB-and IRF-related proteins. Comparisons were made with activities of ubiquitous transcription factors that influence a broad spectrum of promoters independent of proliferation or expression of tissue-specific phenotypic properties. Northern blot analysis indicates that cellular levels of cyclin A and CDC2 mRNAs increase when DNA synthesis and H4 gene expression are initiated, supporting invoulvement in cell cycle progression. Using gel-shift assays, incorporating factor-specific antibody and oligonucleotide competition controls, we define three sequential periods following cytokine stimulation of FDC-P1 cells when selective upregulation of a subset of transcription factors is observed. In the initial period, the levels of SP1 and HiNF-P are moderately elevated; ATF, AP-1, and HiNF-M/IRF-2 are maximal during the second period; while E2F and HiNF-D, which contain cyclin A as a component, predominate during the third period, coinciding with maximal H4 gene expression and DNA synthesis. Differential regulation of H4 gene transcription factors following growth stimulation is consistent with a principal role of histone gene promoter elements in integrating cues from multiple signaling pathways that control cell cycle induction and progression. Regulation of transcription factors controlling histone gene promoter activity within the context of a staged cascade of responsiveness to cyclins and other physiological mediators of proliferation in FDC-P1 cells provides a paradigm for experimentally addressing interdependent cell cycle and cell growth parameters that are operative in hematopoietic stem cells. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 20 (1982), S. 173-189 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The activity of a solid, polymer-supported catalyst (a semicrystalline polyethylene film containing grafted, sulfonated styrene) was shown to be altered by cold drawing. The catalytic activity was measured by a test reaction, the dehydration of isopropyl alcohol to give propylene. Catalytic reaction rates were measured with variously drawn films clamped in a differential flow reactor operated at 100°C and 1 atm. The catalytic activity increased with the elongation of the polymer up to a draw ratio of 2.5; the activity decreased upon further drawing. The drawn films were characterized by x-ray diffraction, dynamic mechanical measurements, electron microscopy, birefringence, and density measurements. Since no evidence was found for the formation of surface sites by creation of microcracks, the changes in activity are attributed to modifications in the polymer structure induced by drawing. The kinetics of the catalytic reaction and the data giving percentage crystallinity and crystalline and amorphous orientation factors suggest that, in the undrawn polymer, the catalytically active —SO3H groups form a hydrogen-bonded network, which is excluded from the crystalline regions. Initial elongation partially breaks up the network, allowing more —SO3H groups to bond to alcohol and become catalytically engaged. Elongation beyond a draw ratio of 2.5 leads to a separation of —SO3H groups greater than that required for the formation of the reaction intermediate, which involves the alcohol hydrogen bonded to several —SO3H groups. The combined results of the catalytic kinetics experiments and structural characterizations imply that the preliminary deformation response of the semicrystalline polymer occurs predominantly within the noncrystalline regions and is accommodated by the rigid slip and tilting of crystal lamellae. The hydrogen bonding among the —SO3H groups in the noncrystalline regions hinders lamellar breakup and suppresses the formation of highly aligned fibrillar morphologies.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...