ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-30
    Description: Plant type III polyketide synthase (PKS) can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum) and compared them with 41 PKS genes inPopulus tremula,Vitis vinifera,Malus domesticaandArabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I–IV). The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) of the PKS gene family. In our study of the five species, gene duplication was found in addition toArabidopsis thalianaand we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs) in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-31
    Description: The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) proteins are a type of nuclear-localized protein with DNA-binding activity in plants. Although the EIN3/EIL gene family has been studied in several plant species, little is known about comprehensive study of the EIN3/EIL gene family in Rosaceae. In this study, ten, five, four, and five EIN3/EIL genes were identified in the genomes of pear (Pyrus bretschneideri), mei (Prunus mume), peach (Prunus persica) and strawberry (Fragaria vesca), respectively. Twenty-eight chromosomal segments of EIL/EIN3 gene family were found in four Rosaceae species, and these segments could form seven orthologous or paralogous groups based on interspecies or intraspecies gene colinearity (microsynteny) analysis. Moreover, the highly conserved regions of microsynteny were found in four Rosaceae species. Subsequently it was found that both whole genome duplication and tandem duplication events significantly contributed to the EIL/EIN3 gene family expansion. Gene expression analysis of the EIL/EIN3 genes in the pear revealed subfunctionalization for several PbEIL genes derived from whole genome duplication. It is noteworthy that according to environmental selection pressure analysis, the strong purifying selection should dominate the maintenance of the EIL/EIN3 gene family in four Rosaceae species. These results provided useful information on Rosaceae EIL/EIN3 genes, as well as insights into the evolution of this gene family in four Rosaceae species. Furthermore, high level of microsynteny in the four Rosaceae plants suggested that a large-scale genome duplication event in the EIL/EIN3 gene family was predated to speciation.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...