ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-30
    Description: A dwarf, multi-pistil and male sterile dms mutant was previously reported by us. However, the genetic changes in this dms are unclear. To examine the genetic changes, single nucleotide polymorphism (SNP) association, chromosome counting, and high-resolution chromosome fluorescence in situ hybridization (FISH) techniques were employed. By comparing tall plants (T) with dwarf plants (D) in the offspring of dms mutant plants, SNP association analysis indicated that most SNPs were on chromosome 2A. There were three types in offspring of dms plants, with 42, 41 and 40 chromosomes respectively. High-resolution chromosome painting analysis demonstrated that T plants had all 42 wheat chromosomes; the medium plants (M) had 41 chromosomes, lacking one chromosome 2A; while D plants had 40 wheat chromosomes, and lacked both 2A chromosomes. These data demonstrated that dms resulted from a loss of chromosome 2A. We identified 23 genes on chromosome 2A which might be involved in the development of stamens or pollen grains. These results lay a solid foundation for further analysis of the molecular mechanisms of wheat male sterility. Because D plants can be used as a female parent to cross with other wheat genotypes, dms is a unique germplasm for any functional study of chromosome 2A and wheat breeding specifically targeting genes on 2A.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-16
    Description: Background Galanthamine, one kind of Amaryllidaceae alkaloid extracted from the Lycoris species, is used in the treatment of Alzheimer’s disease. In regards to medical and economic importance, the biosynthesis and regulatory mechanism of the secondary metabolites in Lycoris remain uninvestigated. Methods BLAST was used to identify the sequence of tyrosine decarboxylase in the transcriptome of Lycoris aurea (L’Hér) Herb. The enzyme activity of this TYDC was determined by using heterologous expressed protein in the Escherichia coli cells. The related productive contents of tyramine were detected using High Performance Liquid Chromatography (HPLC). According to the available micro RNA sequencing profiles and degradome database of L. aurea, microRNA396 were isolated, which targets to LaTYDC1 and RNA Ligase-Mediated-Rapid Amplification of cDNA Ends (RLM-RACE) were used to confirm the cleavage. The expression levels of miR396 and LaTYDC1 were measured using a quantitative real-time polymerase chain reaction (qRT-PCR). Results LaTYDC1 was mainly expressed in root, bulb, leaf and flower fitting the models for galanthamine accumulation. This decarboxylase efficiently catalyzes tyrosine to tyramine conversion. Under methyl jasmonate (MeJA) treatment, the expression of LaTYDC1 and the content of tyramine sharply increase. The use of RLM-RACE confirms that miR396 promotes the degradation of LaTYDC1 mRNA. Under MeJA treatment, the expression of miR396 was suppressed while the expression level of LaTYDC1 sharply increased. Following the increase of the miR396 transcriptional level, LaTYDC1 was significantly repressed. Conclusion LaTYDC1 participates in the biosynthesis of galanthamine, and is regulated by miR396. This finding also provides genetic strategy for improving the yield of galanthamine in the future.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-08
    Description: Tillering is a key agronomy trait for wheat (Triticum aestivum L.) production. Previously, we have reported a dwarf-monoculm wheat mutant (dmc) obtained from cultivar Guomai 301 (wild type, WT), and found growth regulating factors (GRFs) playing important roles in regulating wheat tillering. This study is to systematically investigate the roles of all the wheat GRFs (T. aestivum GRFs, TaGRFs) in regulating tillering, and screen out the key regulators. A total of 30 TaGRFs were identified and their physicochemical properties, gene structures, conserved domains, phylogenetic relationships and tissue expression profiles were analyzed. The expression levels of all the TaGRFs were significantly lower in dmc than those in WT at early tillering stage, and the abnormal expressions of TaGRF2-7(A, B, D), TaGRF5-7D, TaGRF10-6(A, B, D) and TaGRF11-2A were major causes constraining the tillering of dmc. The transcriptions of TaGRFs were significantly affected by exogenous indole acetic acid (IAA) and gibberellin acid (GA3) applications, which suggested that TaGRFs as well as IAA, GA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of GRF genes in wheat.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-21
    Description: Tillering ability is a key agronomy trait for wheat (Triticum aestivum L.) production. Studies on a dwarf monoculm wheat mutant (dmc) showed that ARF11 played an important role in tillering of wheat. In this study, a total of 67 ARF family members were identified and clustered to two main classes with four subgroups based on their protein structures. The promoter regions of T. aestivum ARF (TaARF) genes contain a large number of cis-acting elements closely related to plant growth and development, and hormone response. The segmental duplication events occurred commonly and played a major role in the expansion of TaARFs. The gene collinearity degrees of the ARFs between wheat and other grasses, rice and maize, were significantly high. The evolution distances among TaARFs determine their expression profiles, such as homoeologous genes have similar expression profiles, like TaARF4-3A-1, TaARF4-3A-2 and their homoeologous genes. The expression profiles of TaARFs in various tissues or organs indicated TaARF3, TaARF4, TaARF9 and TaARF22 and their homoeologous genes played basic roles during wheat development. TaARF4, TaARF9, TaARF12, TaARF15, TaARF17, TaARF21, TaARF25 and their homoeologous genes probably played basic roles in tiller development. qRT-PCR analyses of 20 representative TaARF genes revealed that the abnormal expressions of TaARF11 and TaARF14 were major causes constraining the tillering of dmc. Indole-3-acetic acid (IAA) contents in dmc were significantly less than that in Guomai 301 at key tillering stages. Exogenous IAA application significantly promoted wheat tillering, and affected the transcriptions of TaARFs. These data suggested that TaARFs as well as IAA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of ARFs in wheat.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...