ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PeerJ  (4)
  • 1
    Publication Date: 2020-07-23
    Description: Sauropodomorph dinosaurs constitute a well-studied clade of dinosaurs, notably because of the acquisition of gigantism within this group. The genus Plateosaurus is one of the best-known sauropodomorphs, with numerous remains from various localities. Its tumultuous taxonomic history suggests the relevance of addressing its intrageneric shape variability, mixed with taphonomic modifications of the original bone shape. Here we investigate quantitatively the morphological variation of Plateosaurus occurring at the genus level by studying the shape variation of a sample of limb long bones. By means of 3D geometric morphometrics, the analysis of the uncorrelated variation permits separation of the variation estimated as obviously taphonomically influenced from the more biologically plausible variation. Beyond the dominant taphonomic signal, our approach permits interpretation of the most biologically plausible features, even on anatomical parts influenced by taphonomic deformations. Those features are thus found on a quantitative basis from the variation of samples containing fossil specimens, by taking the impact of taphonomy into account, which is paramount in order to avoid making biologically ambiguous interpretations.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-02
    Description: Brachiosauridae is a clade of titanosauriform sauropod dinosaurs that includes the well-known Late Jurassic taxaBrachiosaurusandGiraffatitan. However, there is disagreement over the brachiosaurid affinities of most other taxa, and little consensus regarding the clade’s composition or inter-relationships. An unnamed partial sauropod skeleton was collected from middle–late Oxfordian (early Late Jurassic) deposits in Damparis, in the Jura department of eastern France, in 1934. Since its brief description in 1943, this specimen has been informally known in the literature as the ‘Damparis sauropod’ and ‘FrenchBothriospondylus’, and has been considered a brachiosaurid by most authors. If correctly identified, this would make the specimen the earliest known titanosauriform. Coupled with its relatively complete nature and the rarity of Oxfordian sauropod remains in general, this is an important specimen for understanding the early evolution of Titanosauriformes. Full preparation and description of this specimen, known from teeth, vertebrae and most of the appendicular skeleton of a single individual, recognises it as a distinct taxon:Vouivria damparisensisgen. et sp. nov. Phylogenetic analysis of a data matrix comprising 77 taxa (including all putative brachiosaurids) scored for 416 characters recovers a fairly well resolved Brachiosauridae.Vouivriais a basal brachiosaurid, confirming its status as the stratigraphically oldest known titanosauriform. Brachiosauridae consists of a paraphyletic array of Late Jurassic forms, withEuropasaurus,VouivriaandBrachiosaurusrecovered as successively more nested genera that lie outside of a clade comprising (Giraffatitan+Sonorasaurus) + (Lusotitan+ (Cedarosaurus+Venenosaurus)).Abydosaurusforms an unresolved polytomy with the latter five taxa. The Early Cretaceous South American sauropodPadillasauruswas previously regarded as a brachiosaurid, but is here placed within Somphospondyli. A recent study contended that a number of characters used in a previous iteration of this data matrix are ‘biologically related’, and thus should be excluded from phylogenetic analysis. We demonstrate that almost all of these characters show variation between taxa, and implementation of sensitivity analyses, in which these characters are excluded, has no effect on tree topology or resolution. We argue that where there is morphological variation, this should be captured, rather than ignored. Unambiguous brachiosaurid remains are known only from the USA, western Europe and Africa, and the clade spanned the Late Jurassic through to the late Albian/early Cenomanian, with the last known occurrences all from the USA. Regardless of whether their absence from the Cretaceous of Europe, as well as other regions entirely, reflects regional extinctions and genuine absences, or sampling artefacts, brachiosaurids appear to have become globally extinct by the earliest Late Cretaceous.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-01
    Description: Melanorosaurusis a genus of basal sauropodomorph that currently includes two species from Southern Africa. In this paper, we redescribe the holotype femur ofMelanorosaurus thabanensisfrom the Elliot Formation of Lesotho, as well as associated remains. The stratigraphic position of this taxon is reviewed, and it is clear that it comes from the Lower Elliot Formation being, therefore, Late Triassic in age, and not Early Jurassic as originally described. The knowledge of the anatomy of the basal sauropodomorph of Thabana Morena is enhanced by the description of six new skeletal elements from the type locality. The femur and the ilium from Thabana Morena are diagnostic and characterized by unusual proportions. The first phylogenetic analysis including both this specimen andMelanorosaurusis conducted. This analysis leads to the conclusion that the femur described in the original publication ofMelanorosaurus thabanensiscan no longer be referred toMelanorosaurus. For these reasons, we hereby createMeroktenosgen. nov. to encompassMeroktenos thabanensiscomb. nov.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-20
    Description: Sigilmassasaurus brevicollisis an enigmatic theropod dinosaur from the early Late Cretaceous (Cenomanian) of Morocco, originally based on a few isolated cervical vertebrae. Ever since its original description, both its taxonomic validity and systematic affinities were contentious. Originally considered to represent its own family, Sigilmassasauridae, the genus has variously been suggested to represent a carcharodontosaurid, an ornithischian, and, more recently, a spinosaurid. Here we describe new remains referrable to this taxon and re-evaluate its taxonomic status and systematic affinities. Based on the new remains, a re-evaluation of the original materials, and comparisons with other spinosaurids, the holotype ofSigilmassasaurus brevicollisis identified as an anterior dorsal, rather than a cervical vertebra, and differences between elements referred to this taxon can be explained by different positions of the elements in question within the vertebral column. Many characters used previously to diagnose the genus and species are found to be more widespread among basal tetanurans, and specifically spinosaurids. However, the taxon shows several autapomorphies that support its validity, including the presence of a strongly rugose, ventrally offset triangular platform that is confluent with a ventral keel anteriorly in the mid-cervical vertebral centra and a strongly reduced lateral neural arch lamination, with no or an incomplete distinction between anterior and posterior centrodiapophyseal laminae in the posterior cervical and anterior dorsal vertebrae. We argue furthermore thatSpinosaurus maroccanus, also described on the basis of isolated cervical vertebrae from the same stratigraphic unit and in the same paper asSigilmassasaurus brevicollis, is a subjective synonym of the latter. Both a detailed comparison of this taxon with other theropods and a formal phylogenetic analysis support spinosaurid affintities forSigilmassasaurus. However, we reject the recently proposed synonymy of bothSpinosaurus maroccanusandSigilmassasurus brevicolliswithSpinosaurus aegyptiacusfrom the Cenomanian of Egypt, as there are clear differences between the vertebrae of these taxa, and they do not share any derived character that is not found in other spinosaurids. Together with a comparison with other spinosaurid vertebral material from the Kem Kem, this suggests that more than one taxon of spinosaurid was present in the Kem Kem assemblage of Morocco, so the referral of non-overlapping material from this unit to a single taxon should be regarded with caution.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...