ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PeerJ  (3)
  • The Royal Society  (1)
Collection
Years
  • 1
    Publication Date: 2020-01-02
    Description: Invasive feral swine can damage ecosystems, disrupt plant and animal populations, and transmit diseases. Monitoring of feral swine populations requires expensive and labor-intensive techniques such as aerial surveys, field surveys for sign, trail cameras, and verifying landowner reports. Environmental DNA (eDNA) provides an alternative method for locating feral swine. To aid in detection of this harmful invasive species, a novel assay was developed incorporating molecular methods. From August 2017 to April 2018, water samples and stream data were collected along 400 m transects in two different stream types where swine DNA was artificially introduced to investigate potential factors affecting detection. A generalized linear model (family binomial) was used to characterize environmental conditions affecting swine DNA detection; detection was the dependent variable and stream measurements included stream type, distance downstream, water temperature, velocity, turbidity, discharge, and pH as independent variables. Parameters from the generalized linear model were deemed significant if 95% confidence intervals did not overlap 0. Detection probability for swine DNA negatively related to water temperature (β =  − 0.21, 95% CI [−0.35 to −0.09]), with the highest detection probability (0.80) at 0 °C and lowest detection probability (0.05) at 17.9 °C water temperature. Results indicate that sampling for swine eDNA in free-flowing stream systems should occur at lower water temperatures to maximize detection probability. This study provides a foundation for further development of field and sampling techniques for utilizing eDNA as a viable alternative to monitoring a terrestrial invasive species in northern regions of the United States.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-04
    Description: Background The introduction of northern snakehead (Channa argus; Anabantiformes: Channidae) and their subsequent expansion is one of many problematic biological invasions in the United States. This harmful aquatic invasive species has become established in various parts of the eastern United States, including the Potomac River basin, and has recently become established in the Mississippi River basin in Arkansas. Effective management of C. argus and prevention of its further spread depends upon knowledge of current population structure in the United States. Methods Novel methods for invasive species using whole genomic scans provide unprecedented levels of data, which are able to investigate fine scale differences between and within populations of organisms. In this study, we utilize 2b-RAD genomic sequencing to recover 1,007 single-nucleotide polymorphism (SNP) loci from genomic DNA extracted from 165 C. argus individuals: 147 individuals sampled along the East Coast of the United States and 18 individuals sampled throughout Arkansas. Results Analysis of those SNP loci help to resolve existing population structure and recover five genetically distinct populations of C. argus in the United States. Additionally, information from the SNP loci enable us to begin to calculate the long-term effective population size ranges of this harmful aquatic invasive species. We estimate long-term Ne to be 1,840,000–18,400,000 for the Upper Hudson River basin, 4,537,500–45,375,000 for the Lower Hudson River basin, 3,422,500–34,225,000 for the Potomac River basin, 2,715,000–7,150,000 for Philadelphia, and 2,580,000–25,800,000 for Arkansas populations. Discussion and Conclusions This work provides evidence for the presence of more genetic populations than previously estimated and estimates population size, showing the invasive potential of C. argus in the United States. The valuable information gained from this study will allow effective management of the existing populations to avoid expansion and possibly enable future eradication efforts.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-23
    Description: The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study, we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-01
    Description: Assessing the enormous diversity of Southern Ocean benthic species and their evolutionary histories is a central task in the era of global climate change. Based on mitochondrial markers, it was recently suggested that the circumpolar giant sea spider Colossendeis megalonyx comprises a complex of at least six cryptic species with mostly small and non-overlapping distribution ranges. Here, we expand the sampling to include over 500 mitochondrial COI sequences of specimens from around the Antarctic. Using multiple species delimitation approaches, the number of distinct mitochondrial OTUs increased from six to 15–20 with our larger dataset. In contrast to earlier studies, many of these clades show almost circumpolar distributions. Additionally, analysis of the nuclear internal transcribed spacer region for a subset of these specimens showed incongruence between nuclear and mitochondrial results. These mito-nuclear discordances suggest that several of the divergent mitochondrial lineages can hybridize and should not be interpreted as cryptic species. Our results suggest survival of C. megalonyx during Pleistocene glaciations in multiple refugia, some of them probably located on the Antarctic shelf, and emphasize the importance of multi-gene datasets to detect the presence of cryptic species, rather than their inference based on mitochondrial data alone.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...