ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-27
    Description: Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ∼13,500 and ∼8900 cal. years BP and possibly during the 8200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8 °C during the Holocene Thermal Maximum (HTM) between ∼8900 and ∼4500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of Asian Earth Sciences, PERGAMON-ELSEVIER SCIENCE LTD, 107, pp. 140-150, ISSN: 1367-9120
    Publication Date: 2015-05-20
    Description: Profundal lake sediment cores are often interpreted in line with diverse and detailed sedimentological processes to infer paleoenvironmental conditions. The effects of frozen lake surfaces on terrigenous sediment deposition and how climate changes on the Tibetan Plateau are reflected in these lakes, however, is seldom discussed. A lake sediment core from Hala Lake (590 km2), northeastern Tibetan Plateau spanning the time interval from the Last Glacial Maximum to the present was investigated using high-resolution grain-size composition of lacustrine deposits. Seismic analysis along a north–south profile across the lake was used to infer the sedimentary setting within the lake basin. Periods of freezing and melting processes on the lake surface were identified by MODIS (MOD10A1) satellite data. End-member modeling of the grain size distribution allowed the discrimination between lacustrine, eolian and fluvial sediments. The dominant clay sedimentation (slack water type) during the global Last Glacial Maximum (LGM) reflects ice interceptions in long cold periods, in contrast to abundant eolian input during abrupt cold events. Therefore, fluvial and slack water sedimentation processes can indicate changes in the local paleoclimate during periods of the lake being frozen, when eolian input was minor. Inferred warm (i.e., ∼22.7 and 19.5 cal. ka BP) and cold (i.e., ∼11–9 and 3–1.5 cal. ka BP) spells have significant environmental impacts, not only in the regional realm, but they are also coherent with global-scale climate events. The eolian input generally follows the trend of the mid-latitude westerly wind dynamics in winter, contributing medium-sized sand to the lake center, deposited within the ice cover during icing and melting phases. Enhanced input was dominant during the Younger Dryas, Heinrich Event 1 and at around 8.2 ka, equivalent to the well-known events of the North Atlantic realm.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-21
    Description: A new dataset from Lake Emanda provides insights into climate and environmental dynamics in an extreme continental setting in northeastern Siberia. The δ18Odiatom record is supported by diatom assemblage analysis, modern isotope hydrology and atmospheric circulation patterns. The data reveal a relatively cold oligotrophic freshwater lake system persisting for the last ∼13.2 cal ka BP. Most recent δ18Odiatom (+21.5‰) combined with present-day average δ18Olake (−16.5‰) allows calculating Tlake (∼21 °C), reflecting summer conditions. Nonetheless, the δ18Odiatom variability is associated with changes in δ18Olake rather than with Tlake. An obvious shift of ∼2‰ in the δ18Odiatom record at 11.7–11.5 cal ka BP accompanied by significant changes in diatom assemblages reflects the onset of the Holocene. Relatively high δ18Odiatom during the Early Holocene suggests relatively warm and/or dry climate with associated evaporation effects. The absolute maximum in δ18Odiatom of +27.7‰ consistent with high values of diatom indices at ∼7.9–7.0 cal ka BP suggests a Mid Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since ∼5.0 cal ka BP is interpreted as Middle to Late Holocene cooling reaching the absolute minimum at 0.4 cal ka BP (i.e. the Little Ice Age). An overall cooling trend (∼0.3‰ 1000 yr−1) throughout the Holocene follows decreasing solar insolation. The pattern of the Lake Emanda δ18Odiatom record is similar to that obtained from Lake El’gygytgyn suggesting a common “eastern” regional signal in both records, despite their hydrological differences. Presently, atmospheric moisture reaches the study region from the west and east with ∼40% each, as well as ∼20% from the north.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...