ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PERGAMON-ELSEVIER SCIENCE LTD  (1)
  • SCAR  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2018-08-10
    Description: Marine and terrestrial geological and marine geophysical data that constrain deglaciation since the Last Glacial Maximum (LGM) of the sector of the West Antarctic Ice Sheet (WAIS) draining into the Amundsen Sea and Bellingshausen Sea have been collated and used as the basis for a set of time-slice reconstructions. The drainage basins in these sectors constitute a little more than one-quarter of the area of the WAIS, but account for about one-third of its surface accumulation. Their mass balance is becoming increasingly negative, and therefore they account for an even larger fraction of current WAIS discharge. If all of the ice in these sectors of the WAIS was discharged to the ocean, global sea level would rise by ca. 2 m. There is compelling evidence that grounding lines of palaeo-ice streams were at, or close to, the continental shelf edge along the Amundsen Sea and Bellingshausen Sea margins during the last glacial period. However, the few cosmogenic surface exposure ages and ice core data available from the interior of West Antarctica indicate that ice surface elevations there have changed little since the LGM. In the few areas from which cosmogenic surface exposure ages have been determined near the margin of the ice sheet, they generally suggest that there has been a gradual decrease in ice surface elevation since pre-Holocene times. Radiocarbon dates from glacimarine and the earliest seasonally open marine sediments in continental shelf cores that have been interpreted as providing approximate ages for post-LGM grounding-line retreat indicate different trajectories of palaeo-ice stream recession in the Amundsen Sea and Bellingshausen Sea embayments. The areas were probably subject to similar oceanic, atmospheric and eustatic forcing, in which case the differences are probably largely a consequence of how topographic and geological factors have affected ice flow, and of topographic influences on snow accumulation and warm water inflow across the continental shelf. Pauses in ice retreat are recorded where there are “bottle necks” in cross-shelf troughs in both embayments. The highest retreat rates presently constrained by radiocarbon dates from sediment cores are found where the grounding line retreated across deep basins on the inner shelf in the Amundsen Sea, which is consistent with the marine ice-sheet instability hypothesis. Deglacial ages from the Amundsen Sea Embayment (ASE) and Eltanin Bay (southern Bellingshausen Sea) indicate that the ice sheet had already retreated close to its modern limits by early Holocene time, which suggests that the rapid ice thinning, flow acceleration, and grounding line retreat observed in this sector over recent decades are unusual in the context of the past 10,000 years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-18
    Description: Pine Island Glacier (PIG) is one of the fastest changing ice streams of the West Antarctic Ice Sheet. Its ice shelf underwent major calving events throughout recent years. The main factor for the considerable mass loss of PIG is sub-ice shelf melting caused by the advection of warm deep water into Pine Island Bay on the shelf of the southeastern Amundsen Sea Embayment (ASE). Unique ice conditions during expedition PS104 with RV “Polarstern” to the ASE in February-March 2017 allowed to recover a 7.59 m-gravity core in an area that had been covered by the PIG ice shelf until 2015. The sediment core PS104_008-2 was taken at a water depth of 698 m near the eastern margin of the ice shelf. The new sedimentological data from the core will provide insights into sub-ice shelf environmental conditions and the Holocene history of meltwater plume deposition and oceanic ice-shelf melting. We will present results of our new multi-proxy study, including down-core lithological changes, grain size distribution and excess 210Pb data. Occasional occurrence of calcareous benthic foraminifera shells in the lower part of the core will allow the application of radiocarbon dating. Coupled with the excess 210Pb data, the AMS 14C ages will provide constraints on sub-ice shelf sediment accumulation rates and the discharge rates of subglacial meltwater plumes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...