ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press - The Royal Astronomical Society  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2023-05-25
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: In this study we investigate the correlation between the residuals of a neGMM (non-ergodic Ground Motion Model) and the physics-based parameters obtained using a non-parametric GIT approach (Generalized Inversion Technique) to lay the groundwork for the implementation of an ad-hoc FAS (Fourier Amplitude Spectra) neGMM for the Central Italy region. This region is particularly suitable for data-driven methodologies as those applied in this work because of the large amount of available data due to the recent multiple mainshock-aftershock sequences occurred in this area. Both neGMM and GIT models are developed for Fourier spectra in the frequency range between 0.5 and 25 Hz and using the same reference sites. The comparison of the non-ergodic terms with the source, path and site spectral parameters provides interesting results. First, we find a strong correlation between the source parameters, stress drop Δσ and decay ksource, and the source neGMM corrective terms (the combination of the between-event δBe and the location-to-location terms δL2L). This correlation is frequency dependent and, at high frequency, is remarkably positive for Δσ and negative for ksource. Concerning the attenuation terms, the path-to-path residuals (δP2P) are clearly associated with the deviations from the regional Q estimates obtained from GIT analysis. This indicates that the neGMM properly captures the properties of the anelastic attenuation and that the corrective terms δP2P can be used to account for differences in travel paths across different crustal domains. Finally, adopting the same reference sites for neGMM and non-parametric GIT, we observe that the systematic site terms (δS2Ss) and the GIT-derived amplification functions are in good agreement. The next step for an appropriate modeling is to identify the physical parameters (for example VS,30 and k0) describing the empirical amplification curves to be introduced as explanatory variables in the ground motion model.
    Description: Published
    Description: 51–68
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...