ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-30
    Description: Accessory proteins play important roles in the interaction between coronaviruses and their hosts. Accordingly, a comprehensive study of the compositional diversity and evolutionary patterns of accessory proteins is critical to understanding the host adaptation and epidemic variation of coronaviruses. Here, we developed a standardized genome annotation tool for coronavirus (CoroAnnoter) by combining open reading frame prediction, transcription regulatory sequence recognition and homologous alignment. Using CoroAnnoter, we annotated 39 representative coronavirus strains to form a compositional profile for all of the accessary proteins. Large variations were observed in the number of accessory proteins of 1–10 for different coronaviruses, with SARS-CoV-2 and SARS-CoV having the most (9 and 10, respectively). The variation between SARS-CoV and SARS-CoV-2 accessory proteins could be traced back to related coronaviruses in other hosts. The genomic distribution of accessory proteins had significant intra-genus conservation and inter-genus diversity and could be grouped into 1, 4, 2 and 1 types for alpha-, beta-, gamma-, and delta-coronaviruses, respectively. Evolutionary analysis suggested that accessory proteins are more conservative locating before the N-terminal of proteins E and M (E-M), while they are more diverse after these proteins. Furthermore, comparison of virus-host interaction networks of SARS-CoV-2 and SARS-CoV accessory proteins showed that they share multiple antiviral signaling pathways, those involved in the apoptotic process, viral life cycle and response to oxidative stress. In summary, our study provides a tool for coronavirus genome annotation and builds a comprehensive profile for coronavirus accessory proteins covering their composition, classification, evolutionary pattern and host interaction.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...