ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2014-06-10
    Description: In humans, the Crumbs homolog-1 ( CRB1 ) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and consequent removal from Müller glial and photoreceptor cells, results in severe and progressive retinal degeneration with concomitant loss of retinal function that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Here, we studied the effects of cell-type-specific loss of CRB2 from the developing mouse retina using targeted conditional deletion of Crb2 in photoreceptors or Müller cells. We analyzed the consequences of targeted loss of CRB2 in the adult mouse retina using adeno-associated viral vectors encoding Cre recombinase and short hairpin RNA against Crb2. In vivo retinal imaging by means of optical coherence tomography on retinas lacking CRB2 in photoreceptors showed progressive thinning of the photoreceptor layer and cellular mislocalization. Electroretinogram recordings under scotopic conditions showed severe attenuation of the a-wave, confirming the degeneration of photoreceptors. Retinas lacking CRB2 in developing photoreceptors showed early onset of abnormal lamination, whereas retinas lacking CRB2 in developing Müller cells showed late onset retinal disorganization. Our data suggest that in the developing retina, CRB2 has redundant functions in Müller glial cells, while CRB2 has essential functions in photoreceptors. Our data suggest that short-term loss of CRB2 in adult mouse photoreceptors, but not in Müller glial cells, causes sporadic loss of adhesion between photoreceptors and Müller cells.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-06
    Description: Peripheral nerve injury results in the activation of a number of transcription factors (TFs) in injured neurons, some of which may be key regulators of the regeneration-associated gene (RAG) programme. Among known RAG TFs, ATF3, Smad1, STAT3 and c-Jun have all been linked to successful axonal regeneration and have known functional and physical interactions. We hypothesised that TF expression would promote regeneration of the central axon branch of DRG neurons in the absence of a peripheral nerve lesion and that simultaneous overexpression of multiple RAG TFs would lead to greater effects than delivery of a single TF. Using adeno-associated viral vectors, we overexpressed either the combination of ATF3, Smad1, STAT3 and c-Jun with farnesylated GFP (fGFP), ATF3 only with fGFP, or fGFP only, in DRG neurons and assessed axonal regeneration after dorsal root transection or dorsal column injury and functional improvement after dorsal root injury. ATF3 alone and the combination of TFs promoted faster regeneration in the injured dorsal root. Surprisingly, however, the combination did not perform better than ATF3 alone. Neither treatment was able to induce functional improvement on sensory tests after dorsal root injury or promote regeneration in a dorsal column injury model. The lack of synergistic effects among these factors indicates that while they do increase the speed of axon growth, there may be functional redundancy between these TFs. Because axon growth is considerably less than that seen after a conditioning lesion, it appears these TFs do not induce the full regeneration programme.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...