ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (5)
Collection
Publisher
Years
  • 1
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉In the Sea of Marmara, areas of gas seepage or cold seeps are tightly related to the faults system and understanding the spatial and temporal dynamics in gas-related processes is crucial for geohazard mitigation. Although acoustic surveys proved to be efficient in detecting and locating cold seeps, temporal variability or trends in the gas-related processes are still poorly understood. Two arrays of 10 ocean bottom seismometers were deployed in the western part of the Sea of Marmara in 2011 and 2014, respectively. In addition to the local seismic events, the instruments recorded a large number of short duration events and long-lasting tremors. Short duration events are impulsive signals with duration 〈 1 s, amplitude well above the noise level and a frequency spectrum with one or two narrow peaks. They are not correlated from one site to another, suggesting a very local source. Tremors consist of sequences of clustered impulsive signals lasting for minutes to more than an hour with a multi-peak frequency spectrum. Based on evidence of known seepage and by analogy with volcanic and hydrothermal models, we suggest that short duration events and tremors are associated with gas migration and seepage. There is a relationship between tremors associated with gas emission and the local seismicity, although not systematic. Rather than triggering gas migration out of the seabed, locally strong earthquakes act as catalysts when gas is already present or gas emission is already initiated.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-03
    Description: Volcanic and tectonic events are the main processes involved in the generation of the oceanic crust and responsible for the seismicity associated with seafloor spreading. To monitor this activity, usually not or poorly detected by land-based seismological stations, we deployed from February 2012 to February 2013 a network of autonomous hydrophones to compare the behaviour of the ultraslow-spreading Southwest Indian ridge (SWIR) with that of the intermediate-spreading Southeast Indian ridge (SEIR). The rate of seismicity is similar for both ridges, suggesting that there is no systematic relationship between seismicity and spreading rates. The along-axis distribution of the seismic events, however, does differ, reflecting the rate dependence of accretion modes. Earthquakes are sparse and regularly spaced and scattered along the SWIR, reflecting prevailing tectonic processes. By contrast, along the SEIR, events are irregularly distributed and focus at ridge-segment ends and transforms faults, reflecting the ridge segmentation; only two swarms occurred at a segment centre and are probably caused by a magmatic event. This seismicity distribution thus looks controlled by segment-scale crustal heterogeneities along the SEIR and by regional-scale contrasting accretion processes along the SWIR, probably driven by different lithospheric and asthenospheric dynamics on either side of the Melville fracture zone. The comparison of hydroacoustic and teleseismic catalogues shows that, along these spreading ridges, the background seismicity observed in 1 yr by a hydroacoustic network is representative of the seismicity observed over two decades by land-based networks.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈span〉〈div〉SUMMARY〈/div〉In the Sea of Marmara, areas of gas seepage or cold seeps are tightly related to the faults system and understanding the spatial and temporal dynamics in gas-related processes is crucial for geohazard mitigation. Although acoustic surveys proved to be efficient in detecting and locating cold seeps, temporal variability or trends in the gas-related processes are still poorly understood. Two arrays of 10 ocean bottom seismometers were deployed in the western part of the Sea of Marmara in 2011 and 2014, respectively. In addition to the local seismic events, the instruments recorded a large number of short duration events and long-lasting tremors. Short duration events are impulsive signals with duration 〈1 s, amplitude well above the noise level and a frequency spectrum with one or two narrow peaks. They are not correlated from one site to another, suggesting a very local source. Tremors consist of sequences of clustered impulsive signals lasting for minutes to more than an hour with a multipeak frequency spectrum. Based on evidence of known seepage and by analogy with volcanic and hydrothermal models, we suggest that short duration events and tremors are associated with gas migration and seepage. There is a relationship between tremors associated with gas emission and the local seismicity, although not systematic. Rather than triggering gas migration out of the seabed, locally strong earthquakes act as catalysts when gas is already present or gas emission is already initiated.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2021-03-26
    Description: Summary This study investigates the seismic structure and anisotropy in the crust beneath Madagascar and south-eastern Africa, using receiver functions. The understanding of seismic anisotropy is essential for imaging past and present deformation in the lithosphere-asthenosphere system. In the upper mantle, seismic anisotropy mainly results from the orientation of olivine, which deforms under tectonic (fossil anisotropy) or flow processes (in the asthenosphere). In the crust, the crystallographic alignment of amphiboles, feldspars(plagioclase) or micas or the alignment of heterogeneities such as fractures, add to a complex geometry, which results in challenges to understanding the Earth's shallow structure. The decomposition of receiver functions into back-azimuth harmonics allows to characterize orientations of lithospheric structure responsible for azimuthally-varying seismic signals, such as a dipping isotropic velocity contrasts or layers of azimuthal seismic anisotropy. By analysing receiver function harmonics from records of 48 permanent or temporary stations this study reveals significant azimuthally-varying signals within the upper crust of Madagascar and south-eastern Africa. At 30 stations crustal anisotropy dominates the harmonics while the signature of a dipping isotropic contrast is dominant at the remaining 18 stations. However, all stations’ back-azimuth harmonics show complex signals involving both dipping isotropic and shallow anisotropic contrasts or more than one source of anisotropy at shallow depth. Our calculated orientations for the crust are therefore interpreted as reflecting either the average or the interplay of several sources of azimuthally-varying signals depending of their strength. However, comparing information between stations allows us to draw the same conclusions regionally: in both southern Africa and Madagascar our measurements reflect the interplay between local, inherited structural heterogeneities and crustal seismic anisotropy generated by the current extensional stress field imposed by the southward propagation of the East-African Rift System. A final comparison of our crustal orientations with SKS orientations attributed to mantle deformation further probes the interplay of crustal and mantle anisotropy on SKS measurements.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...