ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2015-10-15
    Description: This paper presents direct-seismogram inversion (DSI) for receiver-side structure which treats the source signal incident from below (the effective source–time function—STF) as a vector of unknown parameters in a Bayesian framework. As a result, the DSI method developed here does not require deconvolution by observed seismogram components as typically applied in receiver-function inversion and avoids the problematic issue of choosing subjective tuning parameters in this deconvolution. This results in more meaningful inversion results and uncertainty estimation compared to classic receiver-function inversion. A rigorous derivation is presented of the likelihood function required for unbiased inversion results. The STF is efficiently inferred by a maximum-likelihood closed-form expression that does not require deconvolution by noisy waveforms. Rather, deconvolution is only by predicted impulse responses for the unknown environment (considered to be a 1-D, horizontally stratified medium). For a given realization of the parameter vector which describes the medium below the station, data predictions are computed as the convolution of the impulse response and the maximum-likelihood source estimate for that medium. Therefore, the assumption of a Gaussian pulse with specified parameters, typical for the prediction of receiver functions, is not required. Directly inverting seismogram components has important consequences for the noise on the data. Since the signal processing does not require filtering and deconvolution, data errors are less correlated and more straightforward to model than those for receiver functions. This results in better inversion results (parameter values and uncertainties), since assumptions made in the derivation of the likelihood function are more likely to be met by the inversion process. The DSI method is demonstrated for simulated waveforms and then applied to data for station Hyderabad on the Indian craton. The measured data are inverted with both the new DSI and traditional receiver-function inversion. All inversions are carried out for a trans-dimensional model that treats the number of layers in the model as unknown. Results for DSI are consistent with previous studies for the same location. The DSI has clear advantages in trans-dimensional inversion. Uncertainty estimates appear more realistic (larger) in both model complexity (number of layers) and in terms of seismic velocity profiles. Receiver-function inversion results in more complex profiles (highly-layered structure) and suggests unreasonably small uncertainties. This effect is likely also significant when the parametrization is considered to be fixed but exacerbated for the trans-dimensional model: If hierarchical errors are poorly estimated, trans-dimensional models overestimate the structure which produces unfavourable results for the receiver-function inversion.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-21
    Description: Seismic arrays provide an important means of enhancing seismic signals and determining the directional properties of the wavefield by beamforming. When multiple arrays are to be used together, the viewpoint needs to be modified from looking outwards from each array to focusing on a specific target area and so constraining the portions of the waveforms to be analysed. Beamforming for each array is supplemented by the relative time constraints for propagation from the target to each array to provide tight spatial control. Simultaneous multiple array analysis provides a powerful tool for source characterization, and for structural analysis of scatterers as virtual sources. The multiple array concept allows us to illuminate a specific point in the Earth from many different directions and thus maps detailed patterns of heterogeneity in the Earth. Furthermore, illumination of the structure from multiple directions using data from the same event minimizes source effects to provide clearer images of heterogeneity. The analysis is based on a similar concept to the backprojection technique, where a part of the seismic wave train is mapped to a specific point in space by ray tracing. In contrast to classic backprojection where the incoming energy is mapped onto a horizontal plane with limited vertical resolution, the multiarray method controls depth response by combining relative time constraints between the arrays and conventional beamforming. We illustrate this approach with application to two earthquakes at moderate depth. The results show that the use of simultaneous multiple arrays can provide improvement both in signal quality and resolution, with the additional benefit of being able to accurately locate the source of the incoming energy and map large areas with only a limited number of such arrays.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-13
    Description: We infer seismic azimuthal anisotropy from ambient-noise-derived Rayleigh waves in the wider Vienna Basin region. Cross-correlations of the ambient seismic field are computed for 1953 station pairs and periods from 5 to 25? s to measure the directional dependence of interstation Rayleigh-wave group velocities. We perform the analysis for each period on the whole data set, as well as in overlapping 2°-cells to regionalize the measurements, to study expected effects from isotropic structure, and isotropic–anisotropic trade-offs. To extract azimuthal anisotropy that relates to the anisotropic structure of the Earth, we analyse the group velocity residuals after isotropic inversion. The periods discussed in this study (5–20? s) are sensitive to crustal structure, and they allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths, fast orientations in the Eastern Alps are S/N to SSW/NNE, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress-field. At greater depths, fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the alignment of crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...