ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (4)
Collection
Years
  • 1
    Publication Date: 2014-11-21
    Description: We announce a new facility in the spectral code cloudy that enables tracking the evolution of a cooling parcel of gas with time. For gas cooling from temperatures relevant to galaxy clusters, earlier calculations estimated the [Fe  xiv ] 5303/[Fe  x ] 6375 luminosity ratio, a critical diagnostic of a cooling plasma, to slightly less than unity. By contrast, our calculations predict a ratio of ~3. We revisit recent optical coronal line observations along the X-ray cool arc around NGC 4696 by Canning et al., which detected [Fe  x ] 6375, but not [Fe  xiv ] 5303. We show that these observations are not consistent with predictions of cooling flow models. Differential extinction could in principle account for the observations, but it requires extinction levels ( A V  〉 3.625) incompatible with previous observations. The non-detection of [Fe  xiv ] implies a temperature ceiling of 2.1 million K. Assuming cylindrical geometry and transonic turbulent pressure support, we estimate the gas mass at ~1 million M . The coronal gas is cooling isochorically. We propose that the coronal gas has not condensed out of the intracluster medium, but instead is the conductive or mixing interface between the X-ray plume and the optical filaments. We present a number of emission lines that may be pursued to test this hypothesis and constrain the amount of intermediate-temperature gas in the system.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-26
    Description: Hubble Space Telescope images, MUSE maps of emission lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the first time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photoevaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star 1 Ori C. The product of these characteristics ( n $\rm _{e}$ x T $\rm _{e}$ ) is the most relevant parameter in modelling a blister-type nebula like the Huygens region, where this quantity should vary with the surface brightness in Hα. Several lines of evidence indicate that small-scale structure and turbulence exist down to the level of our resolution of a few arcseconds. Although photoevaporative flow must contribute at some level to the well-known non-thermal broadening of the emission lines, comparison of quantitative predictions with the observed optical line widths indicates that it is not the major additive broadening component. Derivation of T $\rm _{e}$ values for H + from radio+optical and optical-only ionized hydrogen emission showed that this temperature is close to that derived from [N  ii ] and that the transition from the well-known flat extinction curve which applies in the Huygens region to a more normal steep extinction curve occurs immediately outside of the Bright Bar feature of the nebula.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-03
    Description: Filamin B (FlnB) is an actin-binding protein thought to transduce signals from various membrane receptors and intracellular proteins onto the actin cytoskeleton. Formin1 (Fmn1) is an actin-nucleating protein, implicated in actin assembly and intracellular signaling. Human mutations in FLNB cause several skeletal disorders associated with dwarfism and early bone fusion. Mouse mutations in Fmn1 cause aberrant fusion of carpal digits. We report here that FlnB and Fmn1 physically interact, are co-expressed in chondrocytes in the growth plate and share overlapping expression in the cell cytoplasm and nucleus. Loss of FlnB leads to a dramatic decrease in Fmn1 expression at the hypertrophic-to-ossification border. Loss of Fmn1-FlnB in mice leads to a more severe reduction in body size, weight and growth plate length, than observed in mice following knockout of either gene alone. Shortening of the long bone is associated with a decrease in chondrocyte proliferation and an overall delay in ossification in the double-knockout mice. In contrast to FlnB null, Fmn1 loss results in a decrease in the width of the prehypertrophic zone. Loss of both proteins, however, causes an overall decrease in the width of the proliferation zone and an increase in the differentiated hypertrophic zone. The current findings suggest that Fmn1 and FlnB have shared and independent functions. FlnB loss promotes prehypertrophic differentiation whereas Fmn1 leads to a delay. Both proteins, however, regulate chondrocyte proliferation, and FlnB may regulate Fmn1 function at the hypertrophic-to-ossification border, thereby explaining the overall delay in ossification.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-23
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...