ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-01
    Description: Transposable elements, once described by Barbara McClintock as controlling genetic units, not only occupy the largest part of our genome but are also a prominent moving force of genomic plasticity and innovation. They usually replicate and reintegrate into genomes silently, sometimes causing malfunctions or misregulations, but occasionally millions of years later, a few may evolve into new functional units. Retrotransposons make their way into the genome following reverse transcription of RNA molecules and chromosomal insertion. In therian mammals, long interspersed elements 1 (LINE1s) self-propagate but also coretropose many RNAs, including mRNAs and small RNAs that usually exhibit an oligo(A) tail. The revitalization of specific LINE1 elements in the mammalian lineage about 150 Ma parallels the rise of many other nonautonomous mobilized genomic elements. We previously identified and described hundreds of tRNA-derived retropseudogenes missing characteristic oligo(A) tails consequently termed tailless retropseudogenes. Additional analyses now revealed hundreds of thousands of tailless retropseudogenes derived from nearly all types of RNAs. We extracted 2,402 perfect tailless sequences (with discernible flanking target site duplications) originating from tRNAs, spliceosomal RNAs, 5S rRNAs, 7SK RNAs, mRNAs, and others. Interestingly, all are truncated at one or more defined positions that coincide with internal single-stranded regions. 5S ribosomal and U2 spliceosomal RNAs were analyzed in the context of mammalian phylogeny to discern the origin of the therian LINE1 retropositional system that evolved in our 150-Myr-old ancestor.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-26
    Description: Presence/absence patterns of retroposon insertions at orthologous genomic loci constitute straightforward markers for phylogenetic or population genetic studies. In birds, the convenient identification and utility of these markers has so far been mainly restricted to the lineages leading to model birds (i.e., chicken and zebra finch). We present an easy-to-use, rapid, and cost-effective method for the experimental isolation of chicken repeat 1 (CR1) insertions from virtually any bird genome and potentially nonavian genomes. The application of our method to the little grebe genome yielded insertions belonging to new CR1 subfamilies that are scattered all across the phylogenetic tree of avian CR1s. Furthermore, presence/absence analysis of these insertions provides the first retroposon evidence grouping flamingos + grebes as Mirandornithes and several markers for all subsequent branching events within grebes (Podicipediformes). Five markers appear to be species-specific insertions, including the hitherto first evidence in birds for biallelic CR1 insertions that could be useful in future population genetic studies.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-16
    Description: The Australian numbat, Myrmecobius fasciatus , is the only marsupial that feeds almost exclusively on termites and that has a life following the diurnally restricted and dynamic geographical distribution of termites. The millions of years of this adaptation led to unique morphological and anatomical features, especially basicranial and dental characteristics, that make it difficult to identify a clear phylogenetic affiliation to other marsupials. From DNA sequence analyses, the family Myrmecobiidae is placed within the dasyuromorph marsupials, but the exact position varies from study to study, and support values are mostly rather modest. Here, we report the recovery and analysis of approximately 110,000 quasifossilized traces of mobile element insertions into the genome of a dasyurid marsupial (Tasmanian devil), 25 of which are phylogenetically informative for early dasyuromorphial evolution. Fourteen of these ancient retroposon insertions are shared by the 16 Dasyuromorphia species analyzed, including the numbat, but are absent in the outgroups. An additional 11 other insertions are present in all Dasyuridae but are absent in the numbat. These findings place numbats as the sister group to all living Dasyuridae and show that the investigated Dasyuromorphia, including the Myrmecobiidae, constitutes a monophyletic group that is separated from Peramelemorphia, Notoryctemorphia, and other marsupials.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-28
    Description: Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides , a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene models more strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insect groups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, does N. vespilloides have DNA methylation? We found strong evidence for an active DNA methylation system. The distribution of methylation was similar to other insects with exons having the most methylated CpGs. Methylation status appears highly conserved; 85% of the methylated genes in N. vespilloides are also methylated in the hymentopteran Nasonia vitripennis . The addition of this genome adds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questions about the potential role of methylation in social behavior.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-20
    Description: Freed from the competition of large raptors, Paleocene carnivores could expand their newly acquired habitats in search of prey. Such changing conditions might have led to their successful distribution and rapid radiation. Today, molecular evolutionary biologists are faced, however, with the consequences of such accelerated adaptive radiations, because they led to sequential speciation more rapidly than phylogenetic markers could be fixed. The repercussions being that current genealogies based on such markers are incongruent with species trees. Our aim was to explore such conflicting phylogenetic zones of evolution during the early arctoid radiation, especially to distinguish diagnostic from misleading phylogenetic signals, and to examine other carnivore-related speciation events. We applied a combination of high-throughput computational strategies to screen carnivore and related genomes in silico for randomly inserted retroposed elements that we then used to identify inconsistent phylogenetic patterns in the Arctoidea group, which is well known for phylogenetic discordances. Our combined retrophylogenomic and in vitro wet lab approach detected hundreds of carnivore-specific insertions, many of them confirming well-established splits or identifying and solving conflicting species distributions. Our systematic genome-wide screens for Long INterspersed Elements detected homoplasy-free markers with insertion-specific truncation points that we used to distinguish phylogenetically informative markers from conflicting signals. The results were independently confirmed by phylogenetic diagnostic Short INterspersed Elements. As statistical analysis ruled out ancestral hybridization, these doubly verified but still conflicting patterns were statistically determined to be genomic remnants from a time of ancestral incomplete lineage sorting that especially accompanied large parts of Arctoidea evolution.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-28
    Description: Transcriptions factors (TFs) are pivotal for the regulation of virtually all cellular processes, including growth and development. Expansions of TF families are causally linked to increases in organismal complexity. Here we study the evolutionary dynamics, genetic causes and functional implications of the five largest metazoan TF families. We find that family expansions dominate across the whole metazoan tree; however, some branches experience exceptional family-specific accelerated expansions. Additionally, we find that such expansions are often predated by modular domain rearrangements, which spur the expansion of a new sub-family by separating it from the rest of the TF family in terms of protein–protein interactions. This separation allows for radical shifts in the functional spectrum of a duplicated TF. We also find functional differentiation inside TF sub-families as changes in expression specificity. Furthermore, accelerated family expansions are facilitated by repeats of sequence motifs such as C2H2 zinc fingers. We quantify whole genome duplications and single gene duplications as sources of TF family expansions, implying that some, but not all, TF duplicates are preferentially retained. We conclude that trans-regulatory changes (domain rearrangements) are instrumental for fundamental functional innovations, that cis-regulatory changes (affecting expression) accomplish wide-spread fine tuning and both jointly contribute to the functional diversification of TFs.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-24
    Description: Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-16
    Description: More than 150 Ma, the avian lineage separated from that of other dinosaurs and later diversified into the more than 10,000 species extant today. The early neoavian bird radiations most likely occurred in the late Cretaceous (more than 65 Ma) but left behind few if any molecular signals of their archaic evolutionary past. Retroposed elements, once established in an ancestral population, are highly valuable, virtually homoplasy-free markers of species evolution; after applying stringent orthology criteria, their phylogenetically informative presence/absence patterns are free of random noise and independent of evolutionary rate or nucleotide composition effects. We screened for early neoavian orthologous retroposon insertions and identified six markers with conflicting presence/absence patterns, whereas six additional retroposons established before or after the presumed major neoavian radiation show consistent phylogenetic patterns. The exceptionally frequent conflicting retroposon presence/absence patterns of neoavian orders are strong indicators of an extensive incomplete lineage sorting era, potentially induced by an early rapid successive speciation of ancestral Neoaves.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-20
    Description: Our understanding of genome-wide and comparative sequence information has been broadened considerably by the databases available from the University of California Santa Cruz (UCSC) Genome Bioinformatics Department. In particular, the identification and visualization of genomic sequences, present in some species but absent in others, led to fundamental insights into gene and genome evolution. However, the UCSC tools currently enable one to visualize orthologous genomic loci for a range of species in only a single locus. For large-scale comparative analyses of such presence/absence patterns a multilocus view would be more desirable. Such a tool would enable us to compare thousands of relevant loci simultaneously and to resolve many different questions about, for example, phylogeny, specific aspects of genome and gene evolution, such as the gain or loss of exons and introns, the emergence of novel transposed elements, nonprotein-coding RNAs, and viral genomic particles. Here, we present the first tool to facilitate the parallel analysis of thousands of genomic loci for cross-species presence/absence patterns based on multiway genome alignments. This genome presence/absence compiler uses annotated or other compilations of coordinates of genomic locations and compiles all presence/absence patterns in a flexible, color-coded table linked to the individual UCSC Genome Browser alignments. We provide examples of the versatile information content of such a screening system especially for 7SL-derived transposed elements, nuclear mitochondrial DNA, DNA transposons, and miRNAs in primates ( http://www.bioinformatics.uni-muenster.de/tools/gpac , last accessed October 1, 2014).
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-26
    Description: The scaffolding protein KIBRA (also called WWC1) is involved in the regulation of important intracellular transport processes and the establishment of cell polarity. Furthermore, KIBRA/WWC1 is an upstream regulator of the Hippo signaling pathway that controls cell proliferation and organ size in animals. KIBRA/WWC1 represents only one member of the WWC protein family that also includes the highly similar proteins WWC2 and WWC3. Although the function of KIBRA/WWC1 was studied intensively in cells and animal models, the importance of WWC2 and WWC3 was not yet elucidated. Here, we describe evolutionary, molecular, and functional aspects of the WWC family. We show that the WWC genes arose in the ancestor of bilateral animals (clades such as insects and vertebrates) from a single founder gene most similar to the present KIBRA/WWC1-like sequence of Drosophila . This situation was still maintained until the common ancestor of lancelet and vertebrates. In fish, a progenitor-like sequence of mammalian KIBRA/WWC1 and WWC2 is expressed together with WWC3. Finally, in all tetrapods, the three family members, KIBRA/WWC1, WWC2, and WWC3, are found, except for a large genomic deletion including WWC3 in Mus musculus . At the molecular level, the highly conserved WWC proteins share a similar primary structure, the ability to form homo- and heterodimers and the interaction with a common set of binding proteins. Furthermore, all WWC proteins negatively regulate cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP, the major effector of the Hippo pathway.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...